Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/16856
Title: Analysis and control of SRS of Al-Mg alloys and TWIP steel for improved mechanical performance
Other Titles: Análise e controlo da velocidade de deformação das ligas de AIMg e aço TWIP para melhorar o comportamento mecânico
Author: Bînţu, Alexandra
Advisor: Vincze, Gabriela Tamara
Picu, Cătălin Radu
Keywords: Ciência dos materiais
Ligas de alumínio - Comportamento mecânico
Aço - Comportamento mecânico
Deformação plástica
Defense Date: 2016
Publisher: Universidade de Aveiro
Abstract: Nesta tese são apresentados estudos experimentais e microestruturais para a análise e controlo da sensibilidade à velocidade de deformação (SRS) da liga AA5182 e do aço TWIP com o objetivo de melhorar o comportamento mecânico destes materiais. Os aços TWIP são materiais com elevada resistência mecânica e excecional capacidade de encruamento, parâmetros que conduzem à absorção de uma quantidade significativa de energia antes de rotura. As ligas de AlMg são materiais leves, com boa resistência à corrosão e boas propriedades mecânicas. A larga variedade de aplicações, como por exemplo na indústria automóvel, permitirá melhorar a performance dos produtos e economizar energia. O maior problema destes materiais prende-se com a baixa ou negativa sensibilidade à velocidade de deformação que conduz a uma deformação heterogénea e limita a deformação após estricção. Neste trabalho são estudados métodos para melhorar a SRS das ligas de AlMg através de combinação de deformação plástica severa e tratamentos térmicos, e é investigada a origem física da baixa ou até negativa SRS do aço TWIP através de ensaios à escala macro, micro e nano. Estes estudos são complementados e sustentados por um amplo programa de observações microestructurais através de técnicas de microscopia TEM, SEM e EBSD. A deformação plástica severa na liga de AlMg foi aplicada através de laminagem. Foi demonstrado que o tipo de laminagem (simétrica versus assimétrica), o grau de redução de laminagem e o tratamento térmico realizado após a laminagem são os principais fatores que afetam a evolução da SRS. Especificamente, o aumento do grau de laminagem (de 50% para 90%) resulta num aumento da SRS. A técnica de laminagem assimétrica inversa (ASRR) revelou ser a mais eficiente no aumento do SRS, sendo que esta produz a maior deformação equivalente no material. Adicionalmente, para este tipo de laminagem e uma redução da espessura de 90%, verificou-se que a tensão de cedência aumenta para um tratamento térmico mais longo (de 30min a 120min). Conjetura-se que o processo físico associado ao comportamento observado está relacionado com a movimentação de ida e volta de solutos de Mg da solução sólida para precipitados/cachos durante o processo de laminagem e posterior tratamento térmico. A investigação à sensibilidade da velocidade de deformação de aço TWIP com base em testes mecânicos e caracterização microestrutural foi outro objetivo desta tese. Demonstrou-se que as amostras testadas com uma velocidade de deformação reduzida apresentam uma densidade de maclas maior do que as amostras testadas a uma velocidade de deformação maior. À escala macroscópica este traduz-se numa taxa de encruamento maior para velocidades reduzidas, conduzindo a um coeficiente de sensibilidade à velocidade de deformação em termos de taxa de encruamento negativo. Foi observada uma diminuição da SRS com o aumento da deformação, passando de valores positivos a negativos. O presente estudo demonstrou a importância da medida de escala utilizada na investigação do SRS através de uma combinação de testes de micro- e nano-indentações. Nomeadamente, quando o material é testado a uma escala nanométrica, através de nano-indentação, as amostras pré-deformadas em tração com taxas de deformação menores apresentam sistematicamente uma dureza menor do que as amostras pré-deformadas com taxas mais elevadas. À medida que o volume de material testado aumenta, a dureza relativa das duas amostras passa gradualmente da tendência observada à escala nano para aquela observada à escala macroscópica. O efeito está ligado ao mecanismo de interação entre as estruturas de deslocações e maclas.
In this thesis are presented experimental and microstructural studies for strain rate sensitivity (SRS) control and analysis of AA5182 and Twinning Induced Plasticity steel for improved mechanical performance. TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. Al-Mg alloys are lightweight materials with good corrosion resistance and adequate material properties. The broader use of these materials, for example in the automotive industry, would allow improved product performance and energy savings. The formability of these materials is strongly affected by their negative strain rate sensitivity (SRS) which leads to early failure and limits the post necking deformation. In this work we study ways to improve the strain rate sensitivity of Al-Mg alloys through a combination of severe plastic deformation and annealing, and we investigate the physical origins of the low and potentially negative strain rate sensitivity of TWIP steel through macro, micro and nanoscale testing. These studies are supported by extensive microstructural observations. The severe plastic deformation applied to Al-Mg alloys is applied by rolling. It is shown that the type of rolling (symmetric versus asymmetric), the rolling reduction degree and the applied heat treatment performed after rolling are the main factors affecting the evolution of SRS. Specifically, SRS increases with increasing the degree of rolling for given post-rolling heat treatment. The reversed asymmetric rolling technique appears to be the most efficient in increasing SRS since it produces the largest equivalent plastic strain in the sample. Furthermore, the evolution of tensile flow stresses depends on the chosen thermal treatment; it was observed that the yield stress increases with increasing the annealing time for rolling reduction of 85%. It is conjectured that the physical process responsible for the observed behavior is related to the movement of Mg from solid solution to precipitates/clusters and back during rolling and subsequent annealing. The investigation of the strain rate sensitivity of TWIP steel based on mechanical tests and microstructural characterization is another objective of this thesis. It was demonstrated that slower-deformed samples have a higher twin density, which leads to larger flow stress measured in a macroscopic uniaxial test and results in negative strain hardening rate sensitivity. The SRS is observed to decrease with strain, becoming negative for larger strains. The correlation between SRS and the probing scale was revealed by a combination of micro- and nano-indentation experiments. When probed at the nanoscale by nano-indentation, samples pre-deformed in tension at smaller strain rates exhibit systematically smaller hardness than samples pre-deformed at higher rates. As the volume of material probed increases, the relative hardness of the two types of samples gradually shifts from the trend observed at the nanoscale to that observed macroscopically. The effect is linked to the dislocation-twin interaction mechanism.
Description: Doutoramento em Ciência e Engenharia de Materiais
URI: http://hdl.handle.net/10773/16856
Appears in Collections:UA - Teses de doutoramento
DEMaC - Teses de doutoramento

Files in This Item:
File Description SizeFormat 
Final_TEZA_dupa defesa.pdf5.3 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.