Please use this identifier to cite or link to this item:
Title: Development of a biomechanical multibody knee model
Author: Machado, M.
Flores, P.
Ambrósio, J.
Completo, A.
Keywords: Knee model
Multibody System
Knee joint
Contact Dynamics
Issue Date: 2011
Abstract: The purpose of this work is to develop a mathematical model for the knee joint under the framework of multibody system dynamics. The model is composed by two bodies: the femur, which is stationary, and the tibia, which is considered to move relative to the femur. Due to their higher stiffness compared to that of the articular cartilages, the femur and tibia are modeled as rigid bodies. The articular cartilages are modeled to be deformable structures with specific material characteristics. The main ligaments of the knee joint are included in the model as nonlinear springs. The geometrical profiles of the intervening contact anatomical structures, namely distal femur and proximal tibia, are extracted from a magnetic resonance image (MRI) and then fitted using piecewise cubic splines. Besides the gravitational force, an external force is applied at the center of mass of tibia to provide a dynamic activity to the model. When the bodies contact each other, a continuous non-linear force law is applied to calculate the contact forces as function of an indentation. The forces produced by the ligaments, together with the contact forces, are introduced into the equations of motion as external forces applied to the system. The mechanical behavior of the knee articular cartilages was evaluated using different contact laws. Computational simulations applying an external force with different amplitude values were also performed and the dynamic response of the ligaments was analyzed.
Peer review: yes
ISBN: 978-989-97161-0-0
Publisher Version:
Appears in Collections:DEM - Comunicações

Files in This Item:
File Description SizeFormat 
artigo1.pdf855.44 kBAdobe PDFrestrictedAccess

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.