Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/6964
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAizicovici, Sergiupt
dc.contributor.authorPapageorgiou, Nikolaos S.pt
dc.contributor.authorStaicu, Vasilept
dc.date.accessioned2012-02-28T10:11:38Z-
dc.date.issued2010-
dc.identifier.issn1230-3429pt
dc.identifier.urihttp://hdl.handle.net/10773/6964-
dc.description.abstractWe consider nonlinear Neumann problems driven by the pLaplacian differential operator with a Caratheodory nonlinearity. Under hypotheses which allow resonance with respect to the principal eigenvalue λ0 = 0 at ±∞, we prove existence and multiplicity results. Our approach is variational and uses critical point theory and Morse theory (critical groups).pt
dc.language.isoengpt
dc.publisherJuliusz Schauder University Centrept
dc.rightsrestrictedAccesspor
dc.titleExistence and multiplicity of solutions for resonant nonlinear Neumann problemspt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage235pt
degois.publication.issue2
degois.publication.issue2pt
degois.publication.lastPage252pt
degois.publication.titleTopological Methods in Nonlinear Analysispt
degois.publication.volume35pt
dc.date.embargo10000-01-01-
dc.relation.publisherversionhttp://www-users.mat.uni.torun.pl/~tmna/*
Appears in Collections:DMat - Artigos

Files in This Item:
File Description SizeFormat 
Aiz_Pa_St_TMNA_35(2010)_ 235–252.pdfFull Paper243.78 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.