Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/5042
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Manoj Kumarpt
dc.contributor.authorGracio, Josept
dc.contributor.authorLeDuc, Philippt
dc.contributor.authorGonçalves, Paula P.pt
dc.contributor.authorMarques, Paula A. A. P.pt
dc.contributor.authorGonçalves, Gilpt
dc.contributor.authorMarques, Filipapt
dc.contributor.authorSilva, Virgilia S.pt
dc.contributor.authorCapela e Silva, Fernandopt
dc.contributor.authorReis, Joanapt
dc.contributor.authorPotes, Josept
dc.contributor.authorSousa, Antóniopt
dc.date.accessioned2012-01-11T12:13:49Z-
dc.date.available2012-01-11T12:13:49Z-
dc.date.issued2010-11-
dc.identifier.issn2040-3364pt
dc.identifier.urihttp://hdl.handle.net/10773/5042-
dc.descriptionCESAMpt
dc.description.abstractAs interest in using carbon nanotubes for developing biologically compatible systems continues to grow, biological inspiration is stimulating new directions for in vivo approaches. The ability to integrate nanotechnology-based systems in the body will provide greater successes if the implanted material is made to mimic elements of the biological milieu especially through tuning physical and chemical characteristics. Here, we demonstrate the highly successful capacity for in vivo implantation of a new carbon nanotube-based composite that is, itself, integrated with a hydroxyapatite-polymethyl methacrylate to create a nanocomposite. The success of this approach is grounded in finely tailoring the physical and chemical properties of this composite for the critical demands of biological integration. This is accomplished through controlling the surface modification scheme, which affects the interactions between carbon nanotubes and the hydroxyapatite-polymethyl methacrylate. Furthermore, we carefully examine cellular response with respect to adhesion and proliferation to examine in vitro compatibility capacity. Our results indicate that this new composite accelerates cell maturation through providing a mechanically competent bone matrix; this likely facilitates osteointegration in vivo. We believe that these results will have applications in a diversity of areas including carbon nanotube, regeneration, chemistry, and engineering research.pt
dc.description.sponsorshipNANO/NMed-AT/0115/2007pt
dc.description.sponsorshipSFRH/BPD/14677/2003pt
dc.description.sponsorshipFCTpt
dc.language.isoengpt
dc.publisherThe Royal Society of Chemistrypt
dc.rightsopenAccesspor
dc.subjectPMMApt
dc.subjectCarbon-nanotube compositept
dc.subjectHydroxyapatitept
dc.subjectin vivopt
dc.subjectin vitropt
dc.subjectOsteointegrationpt
dc.subjectBiocompatibilitypt
dc.subjectBone cementpt
dc.titleIntegrated biomimetic carbon nanotube composites for in vivo systemspt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage2855pt
degois.publication.issue12pt
degois.publication.issue12
degois.publication.lastPage2863pt
degois.publication.titleNanoscalept
degois.publication.volume2pt
dc.relation.publisherversionhttp://pubs.rsc.org/en/content/articlepdf/2010/nr/c0nr00237b*
Appears in Collections:TEMA - Artigos
CESAM - Artigos
DBio - Artigos

Files in This Item:
File Description SizeFormat 
2010_Nanoscale 2(2010)2855.pdfDocumento principal425.92 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.