Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/4441
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCardoso, Domingos M.pt
dc.contributor.authorCvetkovic, D.pt
dc.date.accessioned2011-11-29T11:26:24Z-
dc.date.available2011-11-29T11:26:24Z-
dc.date.issued2006-
dc.identifier.issn0561-7332pt
dc.identifier.urihttp://hdl.handle.net/10773/4441-
dc.description.abstractIn this paper we study the conditions under which the stability number of line graphs, generalized line graphs and exceptional graphs attains a convex quadratic programming upper bound. In regular graphs this bound is reduced to the well known Hoffman bound. Some vertex subsets inducing subgraphs with regularity properties are analyzed. Based on an observation concerning the Hoffman bound a new construction of regular exceptional graphs is provided.pt
dc.description.sponsorshipCEOCpt
dc.description.sponsorshipFCTpt
dc.description.sponsorshipFEDERpt
dc.language.isoengpt
dc.publisherAcademie Serbe des Sciences et des Artspt
dc.rightsopenAccesspor
dc.subjectGraph theorypt
dc.subjectGraph spectrapt
dc.subjectLine graphpt
dc.subjectQuadratic programmingpt
dc.subjectStability numberpt
dc.titleGraphs with least eigenvalue -2 attaining a convex quadratic upper bound for the stability numberpt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage41pt
degois.publication.lastPage55pt
degois.publication.titleBulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiquespt
degois.publication.volume31pt
dc.relation.publisherversionhttp://www.emis.de/journals/BSANU/31/4.html*
Appears in Collections:DMat - Artigos

Files in This Item:
File Description SizeFormat 
CardosoCvetkovic2006.pdfElectronic Version135.87 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.