Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/43235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCorreia, Inêspt_PT
dc.contributor.authorIlkaeva, Marinapt_PT
dc.contributor.authorCastellino, Micaelapt_PT
dc.contributor.authorBocchini, Sergiopt_PT
dc.contributor.authorNovais, Rui M.pt_PT
dc.contributor.authorMafra, Luíspt_PT
dc.contributor.authorGonçalves, Nuno P. F.pt_PT
dc.contributor.authorLourenço, Mirtha A. O.pt_PT
dc.date.accessioned2025-01-08T13:23:32Z-
dc.date.available2025-01-08T13:23:32Z-
dc.date.issued2024-
dc.identifier.issn2213-2929pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/43235-
dc.description.abstractN-doped biochars, derived from chitosan sourced from waste crustaceous shells, were produced via microwave-assisted pyrolysis at temperatures ranging from 400 to 800 °C to enhance CO2 and N2 separation. Their performance was compared with biochars from conventional pyrolysis. Microwave-derived biochars exhibited superior CO2 adsorption capacity at 25 °C and 100 kPa (0.78 – 1.56 mmol g−1) compared to conventionally produced ones (0.55 – 1.43 mmol g−1). Increasing the pyrolysis temperature up to 600 °C significantly improved biochar properties, including surface area, pore volume, and CO2 adsorption capacity. Microwave-derived biochar featured enhanced surface area, larger pore volumes, and unique morphologies, requiring, on average, 61 % less preparation time. The higher ultramicroporosity and N-species concentration correlated with superior performance in the biochar produced at 600 °C. In gas mixture experiments (20 % CO2 and 80 % N2) under flow conditions, these biochars showed rapid adsorption/desorption rates due to enhanced macroporosity at samples produced at 600 and 800 °C, facilitating gas diffusion along the ultramicropores. Adsorption heat analysis indicated that the CO2 adsorption is predominantly driven by physisorption, supported by complete sample regeneration when applying N2 flux or increasing the temperature during desorption. The study also explores the feasibility of 3D-printing a composite using the most effective biochar and inorganic polymers sourced from waste, presenting potential benefits for industrial applications.pt_PT
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F50011%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F50011%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0006%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/865974/EUpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/CEEC IND 2018/CEECIND%2F00546%2F2018%2FCP1559%2FCT0021/PTpt_PT
dc.relationCEECIND/01158/2021pt_PT
dc.relationPTDC-CTM-CTM-2205–2020pt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.titleImpact of pyrolysis heating methods on biochars with enhanced CO2/N2 separation and their incorporation in 3D-printed compositespt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.issue5pt_PT
degois.publication.titleJournal of Environmental Chemical Engineeringpt_PT
degois.publication.volume12pt_PT
dc.identifier.doi10.1016/j.jece.2024.113875pt_PT
dc.identifier.essn2213-3437pt_PT
dc.identifier.articlenumber113875pt_PT
Appears in Collections:CICECO - Artigos

Files in This Item:
File Description SizeFormat 
1-s2.0-S2213343724020050-main.pdf6.62 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.