Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/4279
Title: On similarity invariants of matrix commutators
Author: Furtado, S.
Martins, E.A.
Silva, F.C.
Keywords: Eigenvalues
Similarity invariants
Matrix commutators
Issue Date: 2001
Publisher: Elsevier
Abstract: We study the possible eigenvalues, ranks and numbers of nonconstant invariant polynomials of [[[A,X1],X2],...,Xk], when A is a fixed matrix and X1,...,Xk vary. Then we generalize these results in the following way. Let g(X1,..., Xk) be any expression obtained from distinct noncommuting variables X1,...,Xk by applying recursively the Lie product [·,·] and without using the same variable twice. We study the possible eigenvalues, ranks and numbers of nonconstant invariant polynomials of g(X1,...,Xk) when one of the variables X1,...,Xk takes a fixed value in Fn×n and the others vary. © 2001 Elsevier Science Inc.
Description: doi:10.1016/S0024-3795(00)00334-7
Peer review: yes
URI: http://hdl.handle.net/10773/4279
ISSN: 0024-3795
Publisher Version: http://www.sciencedirect.com/science/article/pii/S0024379500003347
Appears in Collections:MAT - Artigos

Files in This Item:
File Description SizeFormat 
on similarity invariants of matrix commutators.pdfficheiro eletrónico130.13 kBAdobe PDFView/Open    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.