Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/42595
Full metadata record
DC FieldValueLanguage
dc.contributor.authorParreira, Tomás G.pt_PT
dc.contributor.authorMarques, Armando E.pt_PT
dc.contributor.authorSakharova, Nataliya A.pt_PT
dc.contributor.authorPrates, Pedro A.pt_PT
dc.contributor.authorPereira, André F. G.pt_PT
dc.date.accessioned2024-10-18T11:16:41Z-
dc.date.available2024-10-18T11:16:41Z-
dc.date.issued2024-02-
dc.identifier.urihttp://hdl.handle.net/10773/42595-
dc.description.abstractAn identification strategy based on a machine learning approach is proposed to identify the constitutive parameters of metal sheets. The main novelty lies in the use of Gaussian Process Regression with the objective of identifying the constitutive parameters of metal sheets from the biaxial tensile test results on a cruciform specimen. The metamodel is intended to identify the constitutive parameters of the work hardening law and yield criterion. The metamodel used as input data the forces along both arms of the cruciform specimen and the strains measured for a given set of points. The identification strategy was tested for a wide range of virtual materials, and it was concluded that the strategy is able to identify the constitutive parameter with a relative error below to 1%. Afterwards, an uncertainty analysis is conducted by introducing noise to the force and strain measurements. The optimal strategy is able to identify the constitutive parameters with errors inferior to 6% in the description of the hardening, anisotropy coefficients and yield stresses in the presence of noise. The study emphasizes that the main strength of the proposed strategy relies on the judicious selection of critical areas for strain measurement, thereby increasing the accuracy and reliability of the identification process.pt_PT
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F00285%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F00481%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00481%2F2020/PTpt_PT
dc.relationCENTRO01-0145-FEDER-022083pt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0104%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0112%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/2022.02370.PTDC/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/POR_CENTRO/2020.08449.BD/PTpt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectCruciform testpt_PT
dc.subjectParameter identificationpt_PT
dc.subjectMachine learningpt_PT
dc.subjectGaussian Processespt_PT
dc.titleIdentification of sheet metal constitutive parameters using metamodeling of the biaxial tensile test on a cruciform specimenpt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.issue2pt_PT
degois.publication.titleMetalspt_PT
degois.publication.volume14pt_PT
dc.identifier.doi10.3390/met14020212pt_PT
dc.identifier.essn2075-4701pt_PT
dc.identifier.articlenumber212pt_PT
Appears in Collections:TEMA - Artigos
DEM - Artigos

Files in This Item:
File Description SizeFormat 
metals-14-00212.pdf4.73 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.