Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/42595
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Parreira, Tomás G. | pt_PT |
dc.contributor.author | Marques, Armando E. | pt_PT |
dc.contributor.author | Sakharova, Nataliya A. | pt_PT |
dc.contributor.author | Prates, Pedro A. | pt_PT |
dc.contributor.author | Pereira, André F. G. | pt_PT |
dc.date.accessioned | 2024-10-18T11:16:41Z | - |
dc.date.available | 2024-10-18T11:16:41Z | - |
dc.date.issued | 2024-02 | - |
dc.identifier.uri | http://hdl.handle.net/10773/42595 | - |
dc.description.abstract | An identification strategy based on a machine learning approach is proposed to identify the constitutive parameters of metal sheets. The main novelty lies in the use of Gaussian Process Regression with the objective of identifying the constitutive parameters of metal sheets from the biaxial tensile test results on a cruciform specimen. The metamodel is intended to identify the constitutive parameters of the work hardening law and yield criterion. The metamodel used as input data the forces along both arms of the cruciform specimen and the strains measured for a given set of points. The identification strategy was tested for a wide range of virtual materials, and it was concluded that the strategy is able to identify the constitutive parameter with a relative error below to 1%. Afterwards, an uncertainty analysis is conducted by introducing noise to the force and strain measurements. The optimal strategy is able to identify the constitutive parameters with errors inferior to 6% in the description of the hardening, anisotropy coefficients and yield stresses in the presence of noise. The study emphasizes that the main strength of the proposed strategy relies on the judicious selection of critical areas for strain measurement, thereby increasing the accuracy and reliability of the identification process. | pt_PT |
dc.language.iso | eng | pt_PT |
dc.publisher | MDPI | pt_PT |
dc.relation | info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F00285%2F2020/PT | pt_PT |
dc.relation | info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F00481%2F2020/PT | pt_PT |
dc.relation | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00481%2F2020/PT | pt_PT |
dc.relation | CENTRO01-0145-FEDER-022083 | pt_PT |
dc.relation | info:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0104%2F2020/PT | pt_PT |
dc.relation | info:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0112%2F2020/PT | pt_PT |
dc.relation | info:eu-repo/grantAgreement/FCT/3599-PPCDT/2022.02370.PTDC/PT | pt_PT |
dc.relation | info:eu-repo/grantAgreement/FCT/POR_CENTRO/2020.08449.BD/PT | pt_PT |
dc.rights | openAccess | pt_PT |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Cruciform test | pt_PT |
dc.subject | Parameter identification | pt_PT |
dc.subject | Machine learning | pt_PT |
dc.subject | Gaussian Processes | pt_PT |
dc.title | Identification of sheet metal constitutive parameters using metamodeling of the biaxial tensile test on a cruciform specimen | pt_PT |
dc.type | article | pt_PT |
dc.description.version | published | pt_PT |
dc.peerreviewed | yes | pt_PT |
degois.publication.issue | 2 | pt_PT |
degois.publication.title | Metals | pt_PT |
degois.publication.volume | 14 | pt_PT |
dc.identifier.doi | 10.3390/met14020212 | pt_PT |
dc.identifier.essn | 2075-4701 | pt_PT |
dc.identifier.articlenumber | 212 | pt_PT |
Appears in Collections: | TEMA - Artigos DEM - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
metals-14-00212.pdf | 4.73 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.