Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/41627
Title: | On nonlinear parametric problems for p-Laplacian-like operators |
Author: | Papageorgiou, N. S. Rocha, E. M. |
Keywords: | Critical groups and Morse theory P-Laplacian-like operator Strong deformation retract Superlinear nonlinearity |
Issue Date: | 2009 |
Publisher: | Springer |
Abstract: | We study a nonlinear parametric problem driven by a p-Laplacian-like operator (which need not be homogeneous) and with a (p - 1)-superlinear nonlinearity which satisfy weaker conditions than the Ambrosetti-Rabinowitz condition. Using critical point theory, we show that for every λ > 0, the nonlinear parametric problem has a nontrivial solution. Then, by strengthening the conditions on the operator and the nonlinearity, and using variational methods together with suitable truncation techniques and tools from Morse theory, we show that, for every λ > 0, the nonlinear parametric problem has three nontrivial smooth solutions. En este artículo estudiamos un problema paramétrico no lineal que involucra al operador de tipo p-Laplaciano (que en general no és homogéneo) y donde la derivada del potencial es una funcíon (p − 1)-superlinear que verifica una condiciíon más débil que la conocida condicíon de Ambrosetti Rabinowitz. Utilizando métodos variacionales, mostramos que, para todo λ > 0, el problema paramétrico no lineal tiene una solucíon no trivial. Entonces, fortaleciendo las condiciones y usando herramientas de la teoría de Morse junto con adecuadas técnicas de truncacíon, mostramos que, para cada λ > 0, el problema tiene tres soluciones suaves. |
Peer review: | yes |
URI: | http://hdl.handle.net/10773/41627 |
DOI: | 10.1007/BF03191850 |
ISSN: | 1578-7303 |
Appears in Collections: | CIDMA - Artigos FAAG - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
AtaDensificacaoMicrocredencial.pdf | 452.62 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.