Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/4118
Title: A general backwards calculus of variations via duality
Author: Malinowska, A.B.
Torres, D.F.M.
Keywords: Calculus of variations
Composition of functionals
Duality
Euler-Lagrange equations
Natural boundary conditions
Time scales
Issue Date: 2011
Publisher: Springer Verlag
Abstract: We prove Euler-Lagrange and natural boundary necessary optimality conditions for problems of the calculus of variations which are given by a composition of nabla integrals on an arbitrary time scale. As an application, we get optimality conditions for the product and the quotient of nabla variational functionals. © 2010 Springer-Verlag.
Peer review: yes
URI: http://hdl.handle.net/10773/4118
ISSN: 1862-4472
Appears in Collections:DMat - Artigos

Files in This Item:
File Description SizeFormat 
[171]A_general_backwards_calculus_of_variations_via_duality.pdf180.65 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.