Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/4091
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFrederico, G.S.F.pt
dc.contributor.authorTorres, D.F.M.pt
dc.date.accessioned2011-10-10T13:52:57Z-
dc.date.issued2008-
dc.identifier.issn0924-090Xpt
dc.identifier.urihttp://hdl.handle.net/10773/4091-
dc.description.abstractUsing the recent formulation of Noether's theorem for the problems of the calculus of variations with fractional derivatives, the Lagrange multiplier technique, and the fractional Euler-Lagrange equations, we prove a Noether-like theorem to the more general context of the fractional optimal control. As a corollary, it follows that in the fractional case the autonomous Hamiltonian does not define anymore a conservation law. Instead, it is proved that the fractional conservation law adds to the Hamiltonian a new term which depends on the fractional-order of differentiation, the generalized momentum and the fractional derivative of the state variable. © 2007 Springer Science+Business Media B.V.pt
dc.language.isoengpt
dc.publisherSpringer Verlagpt
dc.relationdx.doi.org/10.1007/s11071-007-9309-zpt
dc.relation.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-46249125645&partnerID=40&md5=1abd8168d97014730bbec3f8e29f27c4-
dc.rightsrestrictedAccesspor
dc.subjectConservation lawspt
dc.subjectFractional derivativespt
dc.subjectNoether's theorempt
dc.subjectOptimal controlpt
dc.subjectSymmetrypt
dc.titleFractional conservation laws in optimal control theorypt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage215pt
degois.publication.issue3-
degois.publication.issue3pt
degois.publication.lastPage222pt
degois.publication.titleNonlinear Dynamicspt
degois.publication.volume53pt
dc.date.embargo10000-01-01-
Appears in Collections:DMat - Artigos

Files in This Item:
File Description SizeFormat 
[089]comGastao-Nonlinear-Dynamics.pdf315.87 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.