Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/4074
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBastos, N.R.O.pt
dc.contributor.authorFerreira, R.A.C.pt
dc.contributor.authorTorres, D.F.M.pt
dc.date.accessioned2011-10-07T14:41:47Z-
dc.date.issued2011-
dc.identifier.issn1078-0947pt
dc.identifier.urihttp://hdl.handle.net/10773/4074-
dc.description.abstractWe introduce a discrete-time fractional calculus of variations. First and second order necessary optimality conditions are established. Examples illustrating the use of the new Euler-Lagrange and Legendre type conditions are given. They show that the solutions of the fractional problems coincide with the solutions of the corresponding non-fractional variational problems when the order of the discrete derivatives is an integer value.pt
dc.language.isoengpt
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)pt
dc.relationdx.doi.org/10.3934/dcds.2011.29.417pt
dc.relation.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-78651241495&partnerID=40&md5=ee0a3badf68e3056e31fc704287e1b2c-
dc.rightsrestrictedAccesspor
dc.subjectCalculus of variationspt
dc.subjectEuler-Lagrange equationpt
dc.subjectFractional difference calculuspt
dc.subjectFractional summation by partspt
dc.subjectLegendre necessary conditionpt
dc.titleNecessary optimality conditions for fractional difference problems of the calculus of variationspt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage417pt
degois.publication.issue2-
degois.publication.issue2pt
degois.publication.lastPage437pt
degois.publication.titleDiscrete and Continuous Dynamical Systemspt
degois.publication.volume29pt
dc.date.embargo10000-01-01-
Appears in Collections:DMat - Artigos

Files in This Item:
File Description SizeFormat 
[152]Bastos_Ferreira_Torres-Z.pdf509.92 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.