Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/4073
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalinowska, A.B.pt
dc.contributor.authorTorres, D.F.M.pt
dc.date.accessioned2011-10-07T14:35:29Z-
dc.date.issued2011-
dc.identifier.issn1078-0947pt
dc.identifier.urihttp://hdl.handle.net/10773/4073-
dc.description.abstractIn this paper we consider the problem of the calculus of variations for a functional which is the composition of a certain scalar function H with the delta integral of a vector valued field f, i.e., of the form H (int;ba f(t,xσ(t); δ(t))δt). Euler-Lagrange equations, natural boundary conditions for such problems as well as a necessary optimality condition for isoperimetric problems, on a general time scale, are given. A number of corollaries are obtained, and several examples illustrating the new results are discussed in detail.pt
dc.language.isoengpt
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)pt
dc.relationdx.doi.org/10.3934/dcds.2011.29.577pt
dc.relation.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-79954491419&partnerID=40&md5=1c9e721d987e219a0239ad7418c4ecb6-
dc.rightsrestrictedAccesspor
dc.subjectCalculus of variationspt
dc.subjectComposition functionalspt
dc.subjectEuler-Lagrange equationspt
dc.subjectIsoperimetric problemspt
dc.subjectNatural boundary conditionspt
dc.subjectTime scalespt
dc.titleEuler-Lagrange equations for composition functionals in calculus of variations on time scalespt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage577pt
degois.publication.issue2-
degois.publication.issue2pt
degois.publication.lastPage593pt
degois.publication.titleDiscrete and Continuous Dynamical Systemspt
degois.publication.volume29pt
dc.date.embargo10000-01-01-
Appears in Collections:DMat - Artigos

Files in This Item:
File Description SizeFormat 
[151]E-L-eq-composition-functionals-cv-ts.pdf429.33 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.