Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/4072
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBartosiewicz, Z.pt
dc.contributor.authorMartins, N.pt
dc.contributor.authorTorres, D.F.M.pt
dc.date.accessioned2011-10-07T14:26:25Z-
dc.date.issued2011-
dc.identifier.issn0947-3580pt
dc.identifier.urihttp://hdl.handle.net/10773/4072-
dc.description.abstractThe fundamental problem of the calculus of variations on time scales concerns the minimization of a delta-integral over all trajectories satisfying given boundary conditions. In this paper, we prove the second Euler-Lagrange necessary optimality condition for optimal trajectories of variational problems on time scales. As an example of application of the main result, we give an alternative and simpler proof to the Noether theorem on time scales recently obtained in [J. Math. Anal. Appl. 342 (2008), no. 2, 1220-1226]. © 2011 EUCA.pt
dc.language.isoengpt
dc.publisherLavoisier - Hermes Science Publicationspt
dc.relationdx.doi.org/10.3166/ejc.17.9-18pt
dc.relation.urihttp://www.scopus.com/inward/record.url?eid=2-s2.0-79951562167&partnerID=40&md5=b706e6d3b33d39de0403757a5d967b69-
dc.rightsrestrictedAccesspor
dc.subjectCalculus of variationspt
dc.subjectDuBois-Reymond, and second Erdmann necessary optimality conditionspt
dc.subjectEuler-Lagrangept
dc.subjectNoether's theorempt
dc.subjectOptimal controlpt
dc.subjectTime scalespt
dc.titleThe second Euler-Lagrange equation of variational calculus on time scalespt
dc.typearticlept
dc.peerreviewedyespt
ua.distributioninternationalpt
degois.publication.firstPage9pt
degois.publication.issue1pt
degois.publication.issue1-
degois.publication.lastPage18pt
degois.publication.titleEuropean Journal of Controlpt
degois.publication.volume17pt
dc.date.embargo10000-01-01-
Appears in Collections:DMat - Artigos

Files in This Item:
File Description SizeFormat 
[153]The_2nd_E-L_Time_Scales_withNatZbig.pdf1.71 MBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.