Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/4072
Title: The second Euler-Lagrange equation of variational calculus on time scales
Author: Bartosiewicz, Z.
Martins, N.
Torres, D.F.M.
Keywords: Calculus of variations
DuBois-Reymond, and second Erdmann necessary optimality conditions
Euler-Lagrange
Noether's theorem
Optimal control
Time scales
Issue Date: 2011
Publisher: Lavoisier - Hermes Science Publications
Abstract: The fundamental problem of the calculus of variations on time scales concerns the minimization of a delta-integral over all trajectories satisfying given boundary conditions. In this paper, we prove the second Euler-Lagrange necessary optimality condition for optimal trajectories of variational problems on time scales. As an example of application of the main result, we give an alternative and simpler proof to the Noether theorem on time scales recently obtained in [J. Math. Anal. Appl. 342 (2008), no. 2, 1220-1226]. © 2011 EUCA.
Peer review: yes
URI: http://hdl.handle.net/10773/4072
ISSN: 0947-3580
Appears in Collections:MAT - Artigos

Files in This Item:
File Description SizeFormat 
[153]The_2nd_E-L_Time_Scales_withNatZbig.pdf1.71 MBAdobe PDFView/Open    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.