Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/40294
Title: A numerical scheme for a generalized fractional derivative with variable order
Author: Almeida, Ricardo
Keywords: Fractional calculus
Variable-order fractional derivative
Approximation formula
Issue Date: 2024
Publisher: Springer
Abstract: The aim of this paper is to present an approximation formula for the Caputo fractional derivative of variable order, with dependence on an arbitrary kernel. For special cases of this kernel function, or the fractional order being constant, we recover some known formulas. This numerical method involves only integer-order derivatives, so any fractional problem can be approximated by an integer-order problem. Some numerical simulations end the paper, showing the effectiveness of our procedure.
Peer review: yes
URI: http://hdl.handle.net/10773/40294
DOI: 10.1007/978-3-031-50320-7_2
ISBN: 978-3-031-50319-1
ISSN: 0302-9743
Publisher Version: https://link.springer.com/chapter/10.1007/978-3-031-50320-7_2
Appears in Collections:CIDMA - Capítulo de livro
DMat - Capítulo de livro
SCG - Capítulo de livro

Files in This Item:
File Description SizeFormat 
Preprint_Template.pdf423.71 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.