Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/40041
Title: Detecting a poker face
Other Titles: Deteção de uma expressão facial neutra
Author: Sousa, Lúcia Maria Bessa de
Advisor: Neves, António José Ribeiro
Drummond, Miguel Vidal
Keywords: Face identification
Emotion analysis
Machine learning
Computer vision
Defense Date: 4-Jul-2023
Abstract: Neutral facial expression recognition holds significant importance in various domains and applications. This thesis presents a comprehensive study on neutral facial expression recognition, investigating different approaches, techniques, and challenges in the field. The study employs a multi-faceted methodology. Firstly, it examines the impact of datasets, data augmentation, balancing, and creating a specialized dataset by merging existing datasets on emotion recognition. It is found that data augmentation has a significant impact on the training of the model. Subsequently, the study explores the effects of various model architectures, parameters, and training techniques to identify the most effective approach. Notably, the InceptionV3 model demonstrates the best performance with an accuracy of 72%. Additionally, the investigation includes examining different preprocessing methods and their influence on the performance of the best-performing model, InceptionV3, and a simplified CNN model. The results reveal that preprocessing techniques positively impact the performance of the simpler CNN model, leading to improvements. However, it is noteworthy that the application of preprocessing methods has a negative impact on the performance of the InceptionV3 model. These findings highlight the importance of considering the specific model architecture when choosing and applying preprocessing techniques to maximize performance and optimize results. The system implemented to validate the study, showed promising results, for the best performing model, which was subsequently tested with participants, of which 75% obtained correctly classified neutral expressions.
O reconhecimento de expressões faciais neutras tem uma importância significativa em vários domínios e aplicações. Esta tese apresenta um estudo abrangente sobre o reconhecimento de expressões faciais neutras, investigando diferentes abordagens, técnicas e desafios no campo. O estudo utiliza uma metodologia multifacetada. Em primeiro lugar, examina o impacto de conjuntos de dados, aumento de dados, equilíbrio e criação de um conjunto de dados especializado pela fusão de conjuntos de dados existentes no reconhecimento de emoções. Verifica-se que o aumento de dados tem um impacto significativo no treino do modelo. Posteriormente, o estudo explora os efeitos de diferentes arquiteturas de modelos, parâmetros e técnicas de treino para identificar a abordagem mais eficaz. Destaca-se que o modelo InceptionV3 apresenta o melhor desempenho, com uma precisão de 72%. Além disso, a investigação inclui o teste de diferentes métodos de pré-processamento e a sua influência no desempenho do modelo com o melhor desempenho, InceptionV3, e de um modelo CNN mais simples. Os resultados revelam que as técnicas de préprocessamento impactam positivamente o desempenho do modelo CNN, resultando em melhorias. No entanto, é importante destacar que a aplicação de métodos de pré-processamento tem um impacto negativo no desempenho do modelo InceptionV3. Essas descobertas evidenciam a importância de considerar a arquitetura específica do modelo ao escolher e aplicar técnicas de pré-processamento para maximizar o desempenho e otimizar os resultados. O sistema implementado para validar o estudo, demonstrou resultados promissores, para o modelo com melhor desempenho, que foi posteriormente testado com participantes, dos quais 75% obtiveram expressões neutras corretamente classificadas.
URI: http://hdl.handle.net/10773/40041
Appears in Collections:UA - Dissertações de mestrado
DETI - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Documento_Lucia_Sousa.pdf6.32 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.