Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/39466
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFaustino, Nelsonpt_PT
dc.date.accessioned2023-10-10T10:37:57Z-
dc.date.available2023-10-10T10:37:57Z-
dc.date.issued2023-07-
dc.identifier.issn0025-584Xpt_PT
dc.identifier.urihttp://hdl.handle.net/10773/39466-
dc.description.abstractIn this paper we introduce a wide class of space-fractional and time-fractional semidiscrete Dirac operators of L\'evy-Leblond type on the semidiscrete space-time lattice $h\mathbb{Z}^n\times[0,\infty)$ ($h>0$), resembling to fractional semidiscrete counterparts of the so-called parabolic Dirac operators. The methods adopted here are fairly operational, relying mostly on the algebraic manipulations involving Clifford algebras, discrete Fourier analysis techniques as well as standard properties of the analytic fractional semidiscrete semigroup $\left\{\exp(-te^{i\theta}(-\Delta_h)^{\alpha})\right\}_{t\geq 0}$, carrying the parameter constraints $0<\alpha\leq 1$ and $|\theta|\leq \frac{\alpha \pi}{2}$. The results obtained involve the study of Cauchy problems on $h\mathbb{Z}^n\times[0,\infty)$.pt_PT
dc.language.isoengpt_PT
dc.publisherWileypt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04106%2F2020/PTpt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectFractional semidiscrete Dirac operatorspt_PT
dc.subjectRiemann–Liouville fractional derivativept_PT
dc.subjectFractional discrete Laplacianpt_PT
dc.titleOn fractional semidiscrete Dirac operators of Lévy-Leblond typept_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.firstPage2758pt_PT
degois.publication.issue7pt_PT
degois.publication.lastPage2779pt_PT
degois.publication.titleMathematische Nachrichtenpt_PT
degois.publication.volume296pt_PT
dc.identifier.doi10.1002/mana.202100234pt_PT
dc.identifier.essn1522-2616pt_PT
Appears in Collections:CIDMA - Artigos
DMat - Artigos
CHAG - Artigos

Files in This Item:
File Description SizeFormat 
Mathematische Nachrichten - 2023 - Faustino.pdf525.37 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.