Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/39268
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNascimento, Luíspt_PT
dc.contributor.authorFernandes, Cristianapt_PT
dc.contributor.authorSilva, Ricardo M.pt_PT
dc.contributor.authorSemitela, Ângelapt_PT
dc.contributor.authorSousa, Bárbara M. dept_PT
dc.contributor.authorMarques, Paula A. A. P.pt_PT
dc.contributor.authorVieira, Sandra I.pt_PT
dc.contributor.authorSilva, Rui F.pt_PT
dc.contributor.authorBarroca, Nathaliept_PT
dc.contributor.authorGonçalves, Gilpt_PT
dc.date.accessioned2023-08-30T16:02:01Z-
dc.date.issued2023-06-13-
dc.identifier.issn2192-2640pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/39268-
dc.description.abstractNeural tissue-related illnesses have a high incidence and prevalence in society. Despite intensive research efforts to enhance the regeneration of neural cells into functional tissue, effective treatments are still unavailable. Here, a novel therapeutic approach based on vertically aligned carbon nanotube forests (VA-CNT forests) and periodic VA-CNT micropillars produced by thermal chemical vapor deposition is explored. In addition, honeycomb-like and flower-like morphologies are created. Initial viability testing reveals that NE-4C neural stem cells seeded on all morphologies survive and proliferate. In addition, free-standing VA-CNT forests and capillary-driven VA-CNT forests are created, with the latter demonstrating enhanced capacity to stimulate neuritogenesis and network formation under minimal differentiation medium conditions. This is attributed to the interaction between surface roughness and 3D-like morphology that mimics the native extracellular matrix, thus enhancing cellular attachment and communication. These findings provide a new avenue for the construction of electroresponsive scaffolds based on CNTs for neural tissue engineering.pt_PT
dc.language.isoengpt_PT
dc.publisherWileypt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/CEEC IND 2017/CEECIND%2F01913%2F2017%2FCP1459%2FCT0027/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/2022.03596.PTDC/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/829060/EUpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00481%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00481%2F2020/PTpt_PT
dc.relationCENTRO-01-0145-FEDER-022083pt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/POR_CENTRO/2020.06525.BD/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50011%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50011%2F2020/PTpt_PT
dc.relationLA/P/0006/2020pt_PT
dc.relationUIDB/4501/2020pt_PT
dc.relationUIDP/4501/2020pt_PT
dc.relationPOCI-01-0145-FEDER-022122pt_PT
dc.rightsembargoedAccesspt_PT
dc.subjectCapillary-drivenpt_PT
dc.subjectFree-standing carbon nanotubespt_PT
dc.subjectMicropillarspt_PT
dc.subjectNeural tissue engineeringpt_PT
dc.subjectNeuritogenesispt_PT
dc.subjectVertically aligned carbon nanotubespt_PT
dc.titleCustomizing 3D structures of vertically aligned carbon nanotubes to direct neural stem cell differentiationpt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.titleAdvanced Healthcare Materialspt_PT
dc.date.embargo2024-06-13-
dc.identifier.doi10.1002/adhm.202300828pt_PT
dc.identifier.essn2192-2659pt_PT
dc.identifier.articlenumber2300828pt_PT
Appears in Collections:TEMA - Artigos
CICECO - Artigos
IBIMED - Artigos
DEM - Artigos

Files in This Item:
File Description SizeFormat 
Customizing three_article.docx17.03 MBMicrosoft Word XMLembargoedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.