Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/37377
Title: | Sustainable production of lignin nanoparticles (LNPs) |
Other Titles: | Produção sustentável de nanopartículas de lenhina (LNPs) |
Author: | Almeida, Fábio Josué Sousa |
Advisor: | Lopes, André Miguel da Costa Silvestre, Armando Jorge Domingues |
Keywords: | Lignin Nanoparticles Sustainable production LNPs LMPs Antisolvent precipitation Encapsulation |
Defense Date: | 19-Dec-2022 |
Abstract: | Lignin is an aromatic macromolecular component of lignocellulosic biomass and is generally obtained as by-product of bio-based industries (e.g. pulp and paper and second-generation biofuel companies). Since lignin is renewable, widely available and biocompatible, a sustainable valorization of this by-product must be found in the frame of bioeconomy and circular economy. In this sense, the production of lignin nanoparticles (LNPs) presents feasible prospects in lignin´s valorization. However, the production of LNPs is still in an early development stage and yet a challenging process. This work aimed at the sustainable production of lignin nanoparticles (LNPs) through the antisolvent precipitation method. In order to obtain lignin particles at nanometric scale different parameters were evaluated, including the methodology of LNP precipitation (Method A: addition of the antisolvent to the lignin solution; and Method B: addition of the lignin solution to the antisolvent), the lignin solvent (tetrahydrofuran – THF; ethanol – EtOH; ethylene glycol – EtGly; and 𝛾-valerolactone - GVL), the flux addition (0.03/0.2/0.5/1 and 3 ml/min), the lignin solution/antisolvent ratios (1.1/2.8/5.6/11.1/22.2/27.7 and 33.3 v/v%) and the washing step (centrifugation or dialysis). Remarkably, Method A induced the formation of lignin microparticles (LMPs) (from 582.8 to 7820 nm), while desired LNPs (from 127.4 to 264.9 nm) were obtained with Method B for all studied solvents. Furthermore, the Zeta potential values of LNPs presented no significant variation between both methodologies (Method A= from -21.9 mV to -30.0 mV: Method B= from -20.6 mV to -29.5 mV). Regarding to the impact of the lignin solvent, EtOH induced the formation of the smallest LNPs (Method A=582.8 nm; Method B=127.4nm), while EtGly allowed the formation of the largest particles (Method A=7820 nm; Method B=264.9 nm) Furthermore, EtGly-based LNPs were characterized as heterogeneous (Method A PDI=0.505; Method B PDI=0.365), irregular, and highly aggregated when compared to GVL counterparts. Notably, GVL enabled the production of the most homogeneous (Method A PDI=0.057; Method B PDI=0.077) and spherical particles, while THF allowed the formation of cavities. After solvent screening on LNP´s formation, GVL and Method B were elected as the most promising towards low size, spherical and more homogenous LNPs. No significant impact of lignin solution addition rate was observed, while different ratios of lignin solution/antisolvent enabled substantial impact on LNP sizes and Zeta potential. For instance, decreasing ratios of lignin solution/antisolvent (1.1 v/v% of lignin solution), enabled reduction of LNP´s sizes and simultaneous decrease of Zeta potential to -34 mV. Regarding to washing method, dialysis enabled the formation of LNPs with lower size, lower aggregation and higher homogeneity compared to centrifuged LNPs. Yet, centrifuged LNPs presented lower zeta potential, indicating a more effective solvent removal. Finally, GVL-based LNPs were tested by the encapsulation of curcumin. A lenhina é um componente macromolecular aromático da biomassa lenhocelulósica e é obtido como subproduto de indústrias de base biológica (por exemplo, papel e celulose e empresas de biocombustíveis de segunda geração). Como a lenhina é considerada renovável, amplamente disponível e biocompatível, uma valorização sustentável deve ser encontrada no enquadramento da bioeconomia e da economia circular. Nesse sentido, a produção de nanopartículas de lenhina (LNPs) apresenta perspetivas viáveis à sua valorização. Este trabalho teve como objetivo a produção sustentável de nanopartículas de lenhina (LNPs) através do método de precipitação antisolvente. Para obter LNPs foram avaliados diferentes parâmetros, incluindo a metodologia de precipitação (Método A: adição do antisolvente à solução de lenhina; e Método B: adição da solução de lenhina ao antisolvente), o solvente utilizado (tetrahidrofurano – THF; etanol – EtOH; etileno glicol – EtGly; e γ-valerolactona - GVL), o fluxo de adição (0,03/0,2/0,5/1 e 3 ml·min-1), os rácios solução de lenhina/antisolvente (1,1/2,8 /5,6/11,1/22,2/27,7 e 33,3 v/v%) e a etapa de lavagem (centrifugação ou diálise). Notavelmente, o Método A induziu a formação de micropartículas de lenhina (LMPs) (de 582,8 a 7820 nm), enquanto as LNPs desejadas (de 127,4 a 264,9 nm) foram obtidas com o Método B para todos os solventes estudados. Além disso, os valores do potencial Zeta das LNPs não apresentaram variação significativa entre as duas metodologias (Método A= de -21,9 mV a -30,0 mV; Método B= de -20,6 mV a -29,5 mV). Em relação ao impacto do solvente, EtOH induziu a formação das menores LNPs (Método A=582,8; Método B=127,4 nm), enquanto EtGly originou as maiores partículas (Método A=7820 nm; Método B = 264,9 nm) Além disso, as LNPs produzidas em EtGly foram caracterizadas como heterogêneas (Método A PDI = 0,505; Método B PDI = 0,365) e irregulares quando comparadas às LNPs produzidas em GVL. Notavelmente, GVL possibilitou a produção das partículas mais homogêneas (Método A PDI=0,057; Método B PDI=0,077) e esféricas, enquanto o THF permitiu a formação de LNPs com cavidades. Após a triagem de solventes, GVL e o Método B foram eleitos como parâmetros mais promissores para a produção de LNPs de tamanho reduzido, esféricas e homogêneas. Contudo, não se observou um impacto significativo da taxa de adição de solução de lenhina, enquanto diferentes rácios de solução de lenhina/antisolvente induziram a um impacto substancial nos tamanhos e potencial Zeta. Por exemplo, a redução dos rácios de solução de lenhina/antisolvente (1,1 v/v% de solução de lenhina), permitiu a redução dos tamanhos e á diminuição do potencial Zeta (-34,3 mV). Em relação ao método de lavagem, a diálise possibilitou a formação de LNPs com menor tamanho, menor agregação e maior homogeneidade em relação a LNPs centrifugadas. Por outro lado, as LNPs centrifugadas apresentaram um potencial zeta mais baixo, indicando uma remoção mais efetiva do solvente. Finalmente, LNPs produzidas em GVL foram testadas no encapsulamento de curcumina. |
URI: | http://hdl.handle.net/10773/37377 |
Appears in Collections: | UA - Dissertações de mestrado DBio - Dissertações de mestrado DQ - Dissertações de mestrado |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Documento_Fábio_Almeida.pdf | 2.93 MB | Adobe PDF | ![]() |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.