Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Marchi, Luciapt_PT
dc.contributor.authorFreitas, Rosapt_PT
dc.contributor.authorOliva, Matteopt_PT
dc.contributor.authorCuccaro, Alessiapt_PT
dc.contributor.authorManzini, Chiarapt_PT
dc.contributor.authorTardelli, Federicapt_PT
dc.contributor.authorAndrade, Madalenapt_PT
dc.contributor.authorCosta, Marcelopt_PT
dc.contributor.authorLeite, Carlapt_PT
dc.contributor.authorMorelli, Andreapt_PT
dc.contributor.authorChiellini, Federicapt_PT
dc.contributor.authorPretti, Carlopt_PT
dc.description.abstractThe use of carbon nanotubes (CNTs) is rapidly increasing and several scientific studies have addressed their toxicological properties. However, only a very small number of publications have deal with the interaction between CNTs and other molecules. Triclosan (TCS) is an antibacterial agent used in personal care and household products. Commonly detected in aquatic ecosystems, there is a strong evidence that aquatic biota is sensitive to this compound. Aside from emergent pollutants, aquatic organisms are continuously subjected to abiotic variations including salinities. Therefore, the main goal of the present study was to better understand how physio-chemical interactions of CNTs with TCS under different salinity levels (37, 28 and 19) affect the mussel species Mytilus galloprovincialis through the evaluation of biochemical alterations on gametes (sperms) and adult tissues, providing more ecologically relevant information on organisms' responses. The results showed toxicological effects in terms of sperm metabolic activity and intracellular reactive oxygen species production as well as cellular damage and alteration of metabolic capacity at the adult's stage when exposed to both contaminants acting alone and in combination, under tested salinities. Moreover, when the mussels were exposed to the combination of both contaminants, they showed major toxic impacts on both assessed biological levels (adult tissues and sperms) especially under control salinity. This suggests that toxicity upon mixture exposure compared to single-substance exposure may impair mussels' populations, affecting reproduction success and growth.pt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50017%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50017%2F2020/PTpt_PT
dc.relationPOCI-01-0145-FEDER- 028425pt_PT
dc.subjectMytilus galloprovincialispt_PT
dc.subjectSynergistic effectspt_PT
dc.subjectCarbon nanotubespt_PT
dc.subjectSperm quality parameterspt_PT
dc.subjectOxidative stresspt_PT
dc.titleDoes salinity variation increase synergistic effects of triclosan and carbon nanotubes on Mytilus galloprovincialis? Responses on adult tissues and spermspt_PT
degois.publication.titleThe Science of the total environmentpt_PT
Appears in Collections:CESAM - Artigos
DBio - Artigos

Files in This Item:
File Description SizeFormat 
Does salinity variation increase synergistic effects of triclosan.pdf2.89 MBAdobe PDFView/Open

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.