Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/36948
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAizicovici, Sergiupt_PT
dc.contributor.authorPapageorgiou, Nikolaos S.pt_PT
dc.contributor.authorStaicu, Vasilept_PT
dc.date.accessioned2023-04-12T14:23:53Z-
dc.date.available2023-04-12T14:23:53Z-
dc.date.issued2023-
dc.identifier.issn2189-3754pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/36948-
dc.description.abstractWe consider a nonlinear Robin problem driven by a p− Laplacian. The reaction consistes of two terms. The first one is parametric and only locally defined, while the second one is (p − 1)- superlinear. Using cutt-off techniques together with critical point theory and critical groups, we show that for big values of the parameter λ > 0, the problem has at least three nontrivial solutions, all with sign information (positive, negative and nodal). In the semilinear case (p = 2), we produce a second nodal solution, for a total of four nontrivial solutions, all with sign information.pt_PT
dc.language.isoengpt_PT
dc.publisherYokohama publisherspt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F04106%2F2019/PTpt_PT
dc.rightsopenAccesspt_PT
dc.subjectCut-off functionpt_PT
dc.subjectAR-conditionpt_PT
dc.subjectExtremal constant sign solutionspt_PT
dc.subjectRegularity theorypt_PT
dc.titleNonlinear Robin problems with locally defined reactionpt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.firstPage27pt_PT
degois.publication.issue1pt_PT
degois.publication.lastPage47pt_PT
degois.publication.titlePure Applied Functional Analysispt_PT
degois.publication.volume8pt_PT
dc.relation.publisherversionhttp://yokohamapublishers.jp/online2/oppafa/vol8/p27.htmlpt_PT
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
APSPaper_PAFA_v8(2023)_n1_27-47.pdf154.33 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.