Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/36104
Title: Selective potassium chloride recognition, sensing, extraction, and transport using a chalcogen-bonding heteroditopic receptor
Author: Docker, Andrew
Marques, Igor
Kuhn, Heike
Zhang, Zongyao
Félix, Vítor
Beer, Paul D.
Keywords: Anions
Cations
Chlorides
Potassium chloride
Chalcogens
Metals, Alkali
Issue Date: 17-Aug-2022
Publisher: American Chemical Society
Abstract: Chalcogen bonding (ChB) is rapidly rising to prominence in supramolecular chemistry as a powerful sigma (σ)-hole-based noncovalent interaction, especially for applications in the field of molecular recognition. Recent studies have demonstrated ChB donor strength and potency to be remarkably sensitive to local electronic environments, including redox-switchable on/off anion binding and sensing capability. Influencing the unique electronic and geometric environment sensitivity of ChB interactions through simultaneous cobound metal cation recognition, herein, we present the first potassium chloride-selective heteroditopic ion-pair receptor. The direct conjugation of benzo-15-crown-5 ether (B15C5) appendages to Te centers in a bis-tellurotriazole framework facilitates alkali metal halide (MX) ion-pair binding through the formation of a cofacial intramolecular bis-B15C5 M+ (M+ = K+, Rb+, Cs+) sandwich complex and bidentate ChB···X- formation. Extensive quantitative 1H NMR ion-pair affinity titration experiments, solid-liquid and liquid-liquid extraction, and U-tube transport studies all demonstrate unprecedented KCl selectivity over all other group 1 metal chlorides. It is demonstrated that the origin of the receptor's ion-pair binding cooperativity and KCl selectivity arises from an electronic polarization of the ChB donors induced by the cobound alkali metal cation. Importantly, the magnitude of this switch on Te-centered electrophilicity, and therefore anion-binding affinity, is shown to correlate with the inherent Lewis acidity of the alkali metal cation. Extensive computational DFT investigations corroborated the experimental alkali metal cation-anion ion-pair binding observations for halides and oxoanions.
Peer review: yes
URI: http://hdl.handle.net/10773/36104
DOI: 10.1021/jacs.2c05333
ISSN: 0002-7863
Appears in Collections:CICECO - Artigos
DQ - Artigos

Files in This Item:
File Description SizeFormat 
jacs.2c05333.pdf5.92 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.