Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/35309
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAizicovici, Sergiupt_PT
dc.contributor.authorPapageorgiou, Nikolaospt_PT
dc.contributor.authorStaicu, Vasilept_PT
dc.date.accessioned2022-11-25T15:02:16Z-
dc.date.available2022-11-25T15:02:16Z-
dc.date.issued2022-08-16-
dc.identifier.issn2562-7775pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/35309-
dc.description.abstractWe consider a nonlinear logistic equation of superdiffusive type driven by a nonhomogeneous differential operator and a Robin boundary condition. We prove a multiplicity result for positive solutions which is global with respect to the parameter λ > 0 (bifurcation-type theorem). We also demonstrate the existence of a minimal positive solution uλ and determine the monotonicity and continuity properties of the minimal solution map λ → uλ.pt_PT
dc.language.isoengpt_PT
dc.publisherBiemdas Academic Publisherspt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F04106%2F2019/PTpt_PT
dc.rightsopenAccesspt_PT
dc.subjectMinimal positive solutionpt_PT
dc.subjectNonhomogeneous differential operatorpt_PT
dc.subjectNonlinear regularity the orypt_PT
dc.subjectNonlinear maximum principlept_PT
dc.subjectSuperdiffusive reactionpt_PT
dc.titleNonlinear nonhomogeneous logistic equations of superdiffusive typept_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.firstPage277pt_PT
degois.publication.issue3pt_PT
degois.publication.lastPage292pt_PT
degois.publication.titleApplied Set-Valued Analysis and Optimizationpt_PT
degois.publication.volume4pt_PT
dc.relation.publisherversionhttp://asvao.biemdas.com/archives/1488pt_PT
dc.identifier.doi10.23952/asvao.4.2022.3.03pt_PT
dc.identifier.essn2562-7783pt_PT
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
APSPaper_ASVAO2022-3-3 (1).pdf186.74 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.