Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/35263
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJung, Soon-Mopt_PT
dc.contributor.authorSimões, A. M.pt_PT
dc.contributor.authorPonmana Selvan, A.pt_PT
dc.contributor.authorRoh, Jaiokpt_PT
dc.date.accessioned2022-11-23T11:14:42Z-
dc.date.available2022-11-23T11:14:42Z-
dc.date.issued2022-
dc.identifier.issn2156-907Xpt_PT
dc.identifier.urihttp://hdl.handle.net/10773/35263-
dc.description.abstractUsing power series method, Kim and Jung (2007) investigated the Hyers-Ulam stability of the Bessel differential equation, x^2y′′(x)+xy′(x)+(x^2−α^2)y(x) = 0, of order non-integral number α > 0. Also Bicer and Tunc (2017) obtained new sufficient conditions guaranteeing the Hyers-Ulam stability of Bessel differential equation of order zero. In this paper, by classical integral method we will investigate the stability of Bessel differential equations of a more generalized order than previous papers. Also, we will consider a more generalized domain (0, a) for any positive real number a while Kim and Jung (2007) restricted the domain near zero.pt_PT
dc.language.isoengpt_PT
dc.publisherWilmington Scientific Publisherspt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00212%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PTpt_PT
dc.relation2021R1A2C109489611pt_PT
dc.rightsrestrictedAccesspt_PT
dc.subjectPerturbationpt_PT
dc.subjectHyers-Ulam stabilitypt_PT
dc.subjectBessel differential equationpt_PT
dc.titleOn the stability of bessel differential equationpt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.firstPage2014pt_PT
degois.publication.issue5pt_PT
degois.publication.lastPage2023pt_PT
degois.publication.titleJournal of Applied Analysis & Computationpt_PT
degois.publication.volume12pt_PT
dc.identifier.doi10.11948/20210437pt_PT
dc.identifier.essn2158-5644pt_PT
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
AA4.pdf111.22 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.