Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/34742
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMonteiro, Maria V.pt_PT
dc.contributor.authorFerreira, Luís P.pt_PT
dc.contributor.authorRocha, Martapt_PT
dc.contributor.authorGaspar, Vítor M.pt_PT
dc.contributor.authorMano, João F.pt_PT
dc.date.accessioned2022-09-22T11:12:28Z-
dc.date.issued2022-08-
dc.identifier.issn0142-9612pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/34742-
dc.description.abstractPancreatic cancer exhibits a unique bioarchitecture and desmoplastic cancer-stoma interplay that governs disease progression, multi-resistance, and metastasis. Emulating the biological features and microenvironment heterogeneity of pancreatic cancer stroma in vitro is remarkably complex, yet highly desirable for advancing the discovery of innovative therapeutics. Diverse bioengineering approaches exploiting patient-derived organoids, cancer-on-a-chip platforms, and 3D bioprinted living constructs have been rapidly emerging in an endeavor to seamlessly recapitulate major tumor-stroma biodynamic interactions in a preclinical setting. Gathering on this, herein we showcase and discuss the most recent advances in bio-assembling pancreatic tumor-stroma models that mimic key disease hallmarks and its desmoplastic biosignature. A reverse engineering perspective of pancreatic tumor-stroma key elementary units is also provided and complemented by a detailed description of biodesign guidelines that are to be considered for improving 3D models physiomimetic features. This overview provides valuable examples and starting guidelines for researchers envisioning to engineer and characterize stroma-rich biomimetic tumor models. All in all, leveraging advanced bioengineering tools for capturing stromal heterogeneity and dynamics, opens new avenues toward generating more predictive and patient-personalized organotypic 3D in vitro platforms for screening transformative therapeutics targeting the tumor-stroma interplay.pt_PT
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/9471 - RIDTI/PTDC%2FBTM-SAL%2F30503%2F2017/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50011%2F2020/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50011%2F2020/PTpt_PT
dc.relationLA/P/0006/2020pt_PT
dc.relationDFA/BD/7692/2020pt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/POR_CENTRO/SFRH%2FBD%2F141718%2F2018/PTpt_PT
dc.relationCEEC/1048/2019pt_PT
dc.rightsembargoedAccesspt_PT
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/pt_PT
dc.subjectPancreatic tumor-stromapt_PT
dc.subjectIn vitro modelspt_PT
dc.subjectOrganoidspt_PT
dc.subject3D Bioprintingpt_PT
dc.subjectCancer-on-a-chippt_PT
dc.subjectBiomaterialspt_PT
dc.titleAdvances in bioengineering pancreatic tumor-stroma physiomimetic Biomodelspt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.titleBiomaterialspt_PT
degois.publication.volume287pt_PT
dc.date.embargo2023-08-
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0142961222002939pt_PT
dc.identifier.doi10.1016/j.biomaterials.2022.121653pt_PT
dc.identifier.essn1878-5905pt_PT
dc.identifier.articlenumber121653pt_PT
Appears in Collections:CICECO - Artigos
DQ - Artigos

Files in This Item:
File Description SizeFormat 
Manuscript_Monteiro et al_reviewPDAC_2022.pdf1.53 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.