Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/33974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKostyukova, O. I.pt_PT
dc.contributor.authorTchemisova, T. V.pt_PT
dc.date.accessioned2022-05-27T09:11:21Z-
dc.date.available2022-05-27T09:11:21Z-
dc.date.issued2022-03-18-
dc.identifier.issn1862-4472pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/33974-
dc.description.abstractRecently, for a linear copositive programming problem, we formulated an exact explicit dual problem in the form of the extended Lagrange-Slater dual. This dual problem is formulated using only the data of the primal copositive problem, satisfies the strong duality relation, and is obtained without any regularity assumptions due to the use of a concept of the normalized immobile index set. The constraints of the exact explicit dual problem are formulated in terms of completely positive matrices and their number is presented in terms of a finite integer parameter m_0. In this paper, we prove that m_0≤2n, where n is the dimension of the primal variable’s space.pt_PT
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04106%2F2020/PTpt_PT
dc.rightsrestrictedAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectLinear Copositive Programmingpt_PT
dc.subjectStrong dualitypt_PT
dc.subjectNormalized immobile index setpt_PT
dc.subjectExtended dual problempt_PT
dc.subjectConstraint qualificationspt_PT
dc.titleAn exact explicit dual for the linear copositive programming problempt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.titleOptimization Letterspt_PT
dc.identifier.doi10.1007/s11590-022-01870-0pt_PT
dc.identifier.essn1862-4480pt_PT
Appears in Collections:CIDMA - Artigos
DMat - Artigos
OGTCG - Artigos

Files in This Item:
File Description SizeFormat 
Optimization Letters2022-published.pdf322.87 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.