Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/33699
Title: A model for automated support for recognition, extraction, customization and reconstruction of static charts
Other Titles: Um modelo para suporte automatizado ao reconhecimento, extração, personalização e reconstrução de gráficos estáticos
Author: Araújo, Tiago Davi Oliveira de
Advisor: Santos, Maria Beatriz Alves de Sousa
Meiguins, Bianchi Serique
Keywords: Chart recognition
Chart reconstruction
Information visualization
Perspective correction
Augmented reality
Real-time visualization
Interaction
Defense Date: 2-Feb-2022
Abstract: Data charts are widely used in our daily lives, being present in regular media, such as newspapers, magazines, web pages, books, and many others. A well constructed data chart leads to an intuitive understanding of its underlying data and in the same way, when data charts have wrong design choices, a redesign of these representations might be needed. However, in most cases, these charts are shown as a static image, which means that the original data are not usually available. Therefore, automatic methods could be applied to extract the underlying data from the chart images to allow these changes. The task of recognizing charts and extracting data from them is complex, largely due to the variety of chart types and their visual characteristics. Computer Vision techniques for image classification and object detection are widely used for the problem of recognizing charts, but only in images without any disturbance. Other features in real-world images that can make this task difficult are not present in most literature works, like photo distortions, noise, alignment, etc. Two computer vision techniques that can assist this task and have been little explored in this context are perspective detection and correction. These methods transform a distorted and noisy chart in a clear chart, with its type ready for data extraction or other uses. The task of reconstructing data is straightforward, as long the data is available the visualization can be reconstructed, but the scenario of reconstructing it on the same context is complex. Using a Visualization Grammar for this scenario is a key component, as these grammars usually have extensions for interaction, chart layers, and multiple views without requiring extra development effort. This work presents a model for automated support for custom recognition, and reconstruction of charts in images. The model automatically performs the process steps, such as reverse engineering, turning a static chart back into its data table for later reconstruction, while allowing the user to make modifications in case of uncertainties. This work also features a model-based architecture along with prototypes for various use cases. Validation is performed step by step, with methods inspired by the literature. This work features three use cases providing proof of concept and validation of the model. The first use case features usage of chart recognition methods focused on documents in the real-world, the second use case focus on vocalization of charts, using a visualization grammar to reconstruct a chart in audio format, and the third use case presents an Augmented Reality application that recognizes and reconstructs charts in the same context (a piece of paper) overlaying the new chart and interaction widgets. The results showed that with slight changes, chart recognition and reconstruction methods are now ready for real-world charts, when taking time, accuracy and precision into consideration.
Os gráficos de dados são amplamente utilizados na nossa vida diária, estando presentes nos meios de comunicação regulares, tais como jornais, revistas, páginas web, livros, e muitos outros. Um gráfico bem construído leva a uma compreensão intuitiva dos seus dados inerentes e da mesma forma, quando os gráficos de dados têm escolhas de conceção erradas, poderá ser necessário um redesenho destas representações. Contudo, na maioria dos casos, estes gráficos são mostrados como uma imagem estática, o que significa que os dados originais não estão normalmente disponíveis. Portanto, poderiam ser aplicados métodos automáticos para extrair os dados inerentes das imagens dos gráficos, a fim de permitir estas alterações. A tarefa de reconhecer os gráficos e extrair dados dos mesmos é complexa, em grande parte devido à variedade de tipos de gráficos e às suas características visuais. As técnicas de Visão Computacional para classificação de imagens e deteção de objetos são amplamente utilizadas para o problema de reconhecimento de gráficos, mas apenas em imagens sem qualquer ruído. Outras características das imagens do mundo real que podem dificultar esta tarefa não estão presentes na maioria das obras literárias, como distorções fotográficas, ruído, alinhamento, etc. Duas técnicas de visão computacional que podem ajudar nesta tarefa e que têm sido pouco exploradas neste contexto são a deteção e correção da perspetiva. Estes métodos transformam um gráfico distorcido e ruidoso em um gráfico limpo, com o seu tipo pronto para extração de dados ou outras utilizações. A tarefa de reconstrução de dados é simples, desde que os dados estejam disponíveis a visualização pode ser reconstruída, mas o cenário de reconstrução no mesmo contexto é complexo. A utilização de uma Gramática de Visualização para este cenário é um componente chave, uma vez que estas gramáticas têm normalmente extensões para interação, camadas de gráficos, e visões múltiplas sem exigir um esforço extra de desenvolvimento. Este trabalho apresenta um modelo de suporte automatizado para o reconhecimento personalizado, e reconstrução de gráficos em imagens estáticas. O modelo executa automaticamente as etapas do processo, tais como engenharia inversa, transformando um gráfico estático novamente na sua tabela de dados para posterior reconstrução, ao mesmo tempo que permite ao utilizador fazer modificações em caso de incertezas. Este trabalho também apresenta uma arquitetura baseada em modelos, juntamente com protótipos para vários casos de utilização. A validação é efetuada passo a passo, com métodos inspirados na literatura. Este trabalho apresenta três casos de uso, fornecendo prova de conceito e validação do modelo. O primeiro caso de uso apresenta a utilização de métodos de reconhecimento de gráficos focando em documentos no mundo real, o segundo caso de uso centra-se na vocalização de gráficos, utilizando uma gramática de visualização para reconstruir um gráfico em formato áudio, e o terceiro caso de uso apresenta uma aplicação de Realidade Aumentada que reconhece e reconstrói gráficos no mesmo contexto (um pedaço de papel) sobrepondo os novos gráficos e widgets de interação. Os resultados mostraram que com pequenas alterações, os métodos de reconhecimento e reconstrução dos gráficos estão agora prontos para os gráficos do mundo real, tendo em consideração o tempo, a acurácia e a precisão.
URI: http://hdl.handle.net/10773/33699
Appears in Collections:UA - Teses de doutoramento
DETI - Teses de doutoramento

Files in This Item:
File Description SizeFormat 
Documento_Tiago_Araújo.pdf11.41 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.