Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/33034
Title: Riemann–Hilbert problem and matrix biorthogonal polynomials
Author: Branquinho, Amílcar
Foulquié-Moreno, Ana
Mañas-Baena, Manuel
Keywords: Riemann-Hilbert problems
Matrix Pearson equations
Markov functions
Matrix biorthogonal polynomials
Issue Date: 2021
Publisher: Springer
Abstract: Recently the Riemann-Hilbert problem, with jumps supported on appropriate curves in the complex plane, has been presented for matrix biorthogonal polynomials, in particular non-Abelian Hermite matrix biorthogonal polynomials in the real line, understood as those whose matrix of weights is a solution of a Sylvester type Pearson equation with coe cients first order matrix polynomials. We will explore this discussion, present some achievements and consider some new examples of weights for matrix biorthogonal polynomials.
Peer review: yes
URI: http://hdl.handle.net/10773/33034
DOI: 10.1007/978-3-030-56190-1_1
ISBN: 978-3-030-56189-5
Appears in Collections:CIDMA - Capítulo de livro
DMat - Capítulo de livro
CHAG - Capítulo de livro

Files in This Item:
File Description SizeFormat 
MatrixLaguerreBFMMADRID13-13-2018.pdf216.98 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.