Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/32585
Title: Interplay of magnetic properties and doping in epitaxial films of h-REFeO3 multiferroic oxides
Author: Baghizadeh, Ali
Vaghefi, Pegah Mirzadeh
Huang, Xing
Borme, Jerome
Almeida, Bernardo
Salak, Andrei N.
Willinger, Marc-Georg
Amaral, Vitor B.
Vieira, Joaquim M.
Keywords: Electron microscopy
Epitaxy
Ferroelectricity
First-principles calculations
Magnetic oxides
Issue Date: 18-Mar-2021
Publisher: Wiley
Abstract: Multiferroic materials demonstrating coexistence of magnetic and ferroelectric orders are promising candidates for magnetoelectric devices. While understanding the underlying mechanism of interplaying of ferroic properties is important, tailoring their properties to make them potential candidates for magnetoelectric devices is challenging. Here, the antiferromagnetic Neel ordering temperature above 200 K is realized in successfully stabilized epitaxial films of (Lu,Sc)FeO3 multiferroic oxide. The first-principles calculations show the shrinkage of in-plane lattice constants of the unit cells of the films on different substrates which corroborates well the enhancement of the Neel ordering temperature (TN ). The profound effect of lattice strain/stress at the interface due to differences of in-plane lattice constants on out of plane magnetic properties and on spin reorientation temperature in the antiferromagnetic region is further elucidated in the epitaxial films with and without buffer layer of Mn-doped LuFeO3 . Writing and reading ferroelectric domains reveal the ferroelectric response of the films at room temperature. Detailed electron microscopy shows the presence of lattice defects in atomic scale. First-principles calculations show that orbital rehybridization of rare-earth ions and oxygen is one of the main driving force of ferroelectricity along c-axis in thin films of hexagonal ferrites.
Peer review: yes
URI: http://hdl.handle.net/10773/32585
DOI: 10.1002/smll.202005700
ISSN: 1613-6810
Appears in Collections:CICECO - Artigos
DFis - Artigos
DEMaC - Artigos

Files in This Item:
File Description SizeFormat 
small17_202005700.pdf4.27 MBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.