Utilize este identificador para referenciar este registo: http://hdl.handle.net/10773/31300
Título: Recolha e catalogação de amostras biológicas para sistema de classificação hematológico
Autor: Bastos, José Carlos Azevedo
Orientador: Oliveira, Miguel Armando Riem de
Tomé, Ana Maria Perfeito
Palavras-chave: Hematologia
Eritrócitos
Base de dados de eritrócitos
Classificador automático
Visão artificial
Classificação morfológica
Data de Defesa: 15-Jul-2020
Resumo: No âmbito da medicina, o diagnóstico de doenças como anemias ou hemoglobinopatias, passa pela análise de lâminas microscópicas. Este processo já se encontra automatizado, no entanto, apesar de os resultados referentes às células da linha branca serem muito fiáveis, os resultados dos eritrócitos continuam a representar um desafio e a depender da intervenção de um especialista. Esta necessidade de validação conduz a que na, maioria dos laboratórios nacionais, a análise seja efetuada manualmente por inspeção visual das lâminas no microscópio ótico convencional. É portanto um processo moroso e inerentemente subjetivo. Neste enquadramento, com o presente projeto pretendeu-se aperfeiçoar a classificação dos eritrócitos. Numa primeira fase, foi desenvolvido um software de recolha e anotação de imagens microscópicas. Ao ser desenvolvido em estreita colaboração com patologistas do Centro Hospitalar do Baixo Vouga - E.P.E. (CHBV), o software adaptou-se à rotina normal do laboratório. Por conseguinte, proporciona uma apropriada visualização da imagem recolhida, permite a ampliação dos pormenores e a sua comparação com imagens de referência, diminuindo-se a probabilidade de erro na classificação Esta tarefa pode ainda ser complementada através de mecanismos facilitadores das anotações, como o caso da incorporação de dependências entre classes e descritas na bibliografia. Durante a fase de catalogação, o utilizador dispõe de um mecanismo de edição, com liberdade para alterar o resultado das anotações. Conseguida a criação da base de dados de imagens, com 200 imagens, onde constam 3044 eritrócitos com as suas características anotadas de acordo com a referência Dacie and Lewis, avançou-se para a segunda fase, com o desenvolvimento de um algoritmo de visão assistida por computador para a classificação automática de eritrócitos. Este algoritmo permite classificar as células em 3 categorias de alto nível, cor (4), tamanho (3) e forma (12), que se traduzem num total de 19 classes. Em termos de desempenho, os melhores resultados de precisão e recall das 3 categorias, são de: 85,4% e 83,3% para a cor, 93,8% e 92,1% para a forma e 88,8% e 79,5% para o tamanho.
In the field of medicine, the diagnosis of diseases such as anemia or hemoglobinopathies, involves the analysis of microscopic slides. This process is already automated, however, despite the fact the results regarding the white line cells being very reliable, the results of the erythrocytes continue to represent a challenge and to depend on the intervention of a specialist. This need for validation leads to the fact that, in most portuguese laboratories, the analysis is carried out manually, by visual inspection of the slides under the conventional optical microscope. It is therefore a lengthy and inherently subjective process. In this context, this project aimed to improve the classification of erythrocytes. In a first phase, a software for collecting and annotating microscopic images was developed. Having being developed in close collaboration with pathologists from CHBV, and the software was adapted to the normal laboratory routine. Therefore, it provides an appropriate visualization of the collected image, allows the enlargement of details and their comparison with reference images, reducing the probability of error in the classification. This task can also be complemented by functions that make the annotation task easier, such as the incorporation of dependencies between classes described in the bibliography. During the cataloging phase, the user is provided with an editor, with the freedom to change the result of the annotations. The construction of the image database, with 200 images, containing 3044 erythrocytes with their characteristics annotated according to the reference Dacie and Lewis, was achieved. The work then proceeded with the devolopment of an automatic computer vision classifier of erythrocytes. This algorithm allows to classify the cells in 3 high-level categories, color (4), size (3) and shape (12), which make a total of 19 classes. In terms of performance, the best precision and recall results for the 3 categories are: 85,4% and 83,3% for color, 93,8% and 92,1% for shape and 88,8% and 79.5% for the size.
URI: http://hdl.handle.net/10773/31300
Aparece nas coleções: UA - Dissertações de mestrado
DEM - Dissertações de mestrado

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Documento_José_Bastos.pdf20.09 MBAdobe PDFVer/Abrir


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.