Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/31250
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, M.pt_PT
dc.contributor.authorRodrigues, M. M.pt_PT
dc.contributor.authorVieira, N.pt_PT
dc.date.accessioned2021-04-26T15:24:12Z-
dc.date.issued2021-04-
dc.identifier.issn1311-0454pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/31250-
dc.description.abstractIn this work, we consider the n-dimensional fractional Sturm-Liouville eigenvalue problem, by using fractional versions of the gradient operator involving left and right Riemann-Liouville fractional derivatives. We study the main properties of the eigenfunctions and the eigenvalues of the associated fractional boundary problem. More precisely, we show that the eigenfunctions are orthogonal and the eigenvalues are real and simple. Moreover, using techniques from fractional variational calculus, we prove in the main result that the eigenvalues are separated and form an infinite sequence, where the eigenvalues can be ordered according to increasing magnitude. Finally, a connection with Clifford analysis is established.pt_PT
dc.language.isoengpt_PT
dc.publisherDe Gruyterpt_PT
dc.relationUIDB/04106/2020pt_PT
dc.relationUIDP/04106/2020pt_PT
dc.relationCEECIND/01131/2018pt_PT
dc.rightsembargoedAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectFractional derivativespt_PT
dc.subjectFractional Sturm-Liouville problempt_PT
dc.subjectFractional variational calculuspt_PT
dc.subjectEigenvalue problempt_PT
dc.subjectEigenfunctionspt_PT
dc.subjectFractional Clifford analysispt_PT
dc.titleA fractional analysis in higher dimensions for the Sturm-Liouville problempt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.firstPage585pt_PT
degois.publication.issue2pt_PT
degois.publication.lastPage620pt_PT
degois.publication.titleFractional Calculus and Applied Analysispt_PT
degois.publication.volume24pt_PT
dc.date.embargo2022-03-31-
dc.relation.publisherversionhttps://www.degruyter.com/journal/key/FCA/htmlpt_PT
dc.identifier.doi10.1515/fca-2021-0026pt_PT
dc.identifier.essn1314-2224pt_PT
Appears in Collections:CIDMA - Artigos
DMat - Artigos
CHAG - Artigos

Files in This Item:
File Description SizeFormat 
artigo32.pdfMFMRNV_FCAA_2021470.36 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.