Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/31221
Title: Development of magnetic temperature sensors for hyperthermia and cryogeny applications
Other Titles: Desenvolvimento de sensores magnéticos de temperatura para hipertermia e aplicações criogénicas
Author: Perfeito, Francisca Gonçalves
Advisor: Silva, Nuno João de Oliveira e
Firmino, Ana Daniela Gonçalves
Keywords: Magnetic nanoparticles
Mn-Zn ferrites
Nanothermometers
Wireless sensors
Hyperthermia
Cryopreservation
Defense Date: 26-Mar-2021
Abstract: Magnetic iron oxide nanoparticles have gathered increasing attention from the scientific community over the years due to their promising features such as their in vivo biocompatibility, versatile surface modifications, and facile synthesis. With this in mind, temperature sensing comprises one of the most delicate areas of thermometry when applied to processes such as magnetic hyperthermia and cryopreservation, which strongly depend on minute temperature changes. In fact, gaining insight into the small temperature variations occurring at cellular scale is currently addressed using nanothermometers based on the well-defined temperature dependence of a given property. However, current approaches are mainly based on optical properties, being limited by several drawbacks, such as the inefficient penetration of light in many tissues, for example. In view to overcome this great challenge, magnetic nanoparticles have a huge potential, since they combine adequate size for cellular internalization and magnetic fields can easily penetrate tissues, enabling remote temperature monitorization. In this context, the objective of this thesis is to develop stable Mn-Zn ferrite nanoparticles dispersed in aqueous medium to act as remote distance temperature sensors for bioapplications, in particular for hyperthermia and cryogenic applications. MnxZn1-xFe2O4 NPs were successfully produced using two distinct methodologies, namely thermal decomposition, and a molten salt-assisted thermal decomposition approach. The prepared NPs were then analyzed by scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), zeta potential, and magnetic properties. X-ray powder diffraction (XRD) successfully verified the presence of a cubic crystal structure with a predominant phase in the Fd3" m space group of the Mn-Zn ferrites produced by both methodologies. FT-IR spectroscopy was used to assess presence of several compounds on the NPs surface, such as the functionalization of the particles with citric acid and EDTA. Moreover, Rietveld refinement was useful to discriminate the NPs sizes, which overall constituted diameters ranging from 5.9 to 15 nm by thermal decomposition methodology and 1.3 to 4.2 nm by molten salts methodology. Magnetization measurements were made to evaluate the potential of the NPs as magnetic nanothermometers, in which the 6.9 nm-sized Mn0.30Zn0.47Fe2O4 (sample TD9) nanoparticles exhibited magnetic reversibility between 100 to 375 K with a maximum sensibility of 2.9 %.K-1 at 225 K. In addition, the 8.0 nm-sized Mn0.11Zn0.78Fe2O4 (sample TD4) nanoparticles also revealed potential sensor applications between 300 and 400 K, with a maximum sensibility of 2.1 %.K-1 at 300 K. According to these findings, the produced NPs are deemed suitable for both hyperthermia and cryopreservation applications. Lastly, the encapsulation of these ferrofluids was carried out with gelatin, in order to simulate a 3-D phantom tissue to be subjected to temperature changes to assess the effectiveness of the behavior of the nanoparticles as wireless sensors. In sum, all the results highlight great potential in the hereby produced MnxZn1-xFe2O4 NPs for nanothermometry.
Nanopartículas magnéticas de óxido de ferro têm atraído a atenção da comunidade científica ao longo dos anos devido às suas características promissoras, tais como a sua biocompatibilidade in vivo, modificações de superfície versáteis e síntese fácil. Com isso em mente, no que toca a sensores de temperatura, estes constituem uma das mais delicadas áreas da termometria quando aplicado a processos como hipertermia magnética e criopreservação, que possuem uma forte dependência a mudanças mínimas de temperatura. Na verdade, obter informações sobre as pequenas variações de temperatura que ocorrem em escala celular é atualmente abordado usando nanotermómetros com base na dependência bem definida de uma determinada propriedade com a temperatura. No entanto, as abordagens atuais são baseadas principalmente em propriedades óticas, sendo limitadas por vários inconvenientes, tais como a penetração ineficiente da luz em muitos tecidos, por exemplo. Visando superar este grande desafio, as nanopartículas magnéticas apresentam um enorme potencial, pois combinam o tamanho adequado para internalização em células e os campos magnéticos podem facilmente penetrar nos tecidos, possibilitando a monitoração remota da temperatura com o magnetismo. Neste contexto, o objetivo desta tese é desenvolver nanopartículas estáveis de ferrite Mn-Zn dispersas em meio aquoso para atuar como sensores remotos de temperatura para aplicações biológicas, em particular para hipertermia magnética e criopreservação. Nanopartículas MnxZn1-xFe2O4 foram produzidas com sucesso usando duas metodologias distintas: decomposição térmica e pelo método de sais fundidos auxiliado pelo aumento de temperatura. As nanopartículas preparadas foram analisadas por microscopia eletrônica de varrimento (SEM), microscopia eletrônica de varrimento em modo de transmissão (TEM), espectroscopia dispersiva de energia de raios-X (EDS), espectroscopia de infravermelho com transformada de Fourier (FT-IR), espalhamento de luz dinâmico (DLS), potencial zeta, e propriedades magnéticas. A difração de raios-X (XRD) verificou com sucesso a presença de uma estrutura cristalina cúbica com uma fase predominante no grupo espacial Fd3" m das ferrites Mn-Zn produzidas por ambas as metodologias. A espectroscopia FT-IR foi utilizada para avaliar a presença de vários compostos na superfície das nanopartículas, como por exemplo, a funcionalização das partículas com ácido cítrico e EDTA. Além disso, a análise do Refinamento de Rietveld foi útil para discriminar os tamanhos de nanopartículas, que, no geral, constituíram diâmetros variando de 5.9 a 15 nm na metodologia por decomposição térmica e tamanhos entre 1.3 a 4.2 nm na metodologia por sais fundidos. Foram realizadas medidas de magnetização das nanopartículas para avaliar seu potencial como nanotermómetros magnéticos, nos quais as nanopartículas Mn0.30Zn0.47Fe2O4 (amostra TD9) com um tamanho de cerca de 6.9 nm, demonstraram reversibilidade entre 150 e 375 K com um máximo de sensibilidade (Sm) de cerca de 2.9 %.K-1 a 225 K. Para além disso, também se verificou que as nanopartículas Mn0.11Zn0.78Fe2O4 (amostra TD4) com um tamanho de cerca 8.0 nm revelaram funcionar como um sensor entre 300 e 400 K com uma máxima sensibilidade máxima de aproximadamente 2.1 %.K-1 a 300 K. Tendo em conta estes resultados, as nanopartículas produzidas são consideradas apropriadas para aplicações de hipertermia e criopreservação. Por fim, a encapsulação destes ferrofluidos foi efetuada com gelatina, de modo a simular um compartimento liquefeito tridimensional sujeito a alterações de temperatura para avaliar a eficácia do comportamento das nanopartículas como sensores. Em suma, todos os resultados destacam o grande potencial das nanopartículas MnxZn1-xFe2O4 produzidas para nanotermometria.
URI: http://hdl.handle.net/10773/31221
Appears in Collections:UA - Dissertações de mestrado
DEMaC - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Documento_Francisca_Perfeito.pdf16.4 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.