Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/30455
Title: High‐performance and industrially viable nanostructured siOx layers for interface passivation in thin film solar cells
Author: Cunha, José M. V.
Oliveira, Kevin
Lontchi, Jackson
Lopes, Tomás S.
Curado, Marco A.
Barbosa, João R. S.
Vinhais, Carlos
Chen, Wei-Chao
Borme, Jérôme
Fonseca, Helder
Gaspar, João
Flandre, Denis
Edoff, Marika
Silva, Ana G.
Teixeira, Jennifer P.
Fernandes, Paulo A.
Salomé, Pedro M. P.
Keywords: Cu(InGa)Se2
Passivation
Photolithography
Silicon oxide
Ultrathin
Issue Date: Jan-2021
Publisher: Wiley
Abstract: Herein, it is demonstrated, by using industrial techniques, that a passivation layer with nanocontacts based on silicon oxide (SiOx) leads to significant improvements in the optoelectronical performance of ultrathin Cu(In,Ga)Se2 (CIGS) solar cells. Two approaches are applied for contact patterning of the passivation layer: point contacts and line contacts. For two CIGS growth conditions, 550 and 500 °C, the SiOx passivation layer demonstrates positive passivation properties, which are supported by electrical simulations. Such positive effects lead to an increase in the light to power conversion efficiency value of 2.6% (absolute value) for passivated devices compared with a nonpassivated reference device. Strikingly, both passivation architectures present similar efficiency values. However, there is a trade‐off between passivation effect and charge extraction, as demonstrated by the trade‐off between open‐circuit voltage (Voc) and short‐circuit current density (Jsc) compared with fill factor (FF). For the first time, a fully industrial upscalable process combining SiOx as rear passivation layer deposited by chemical vapor deposition, with photolithography for line contacts, yields promising results toward high‐performance and low‐cost ultrathin CIGS solar cells with champion devices reaching efficiency values of 12%, demonstrating the potential of SiOx as a passivation material for energy conversion devices.
Peer review: yes
URI: http://hdl.handle.net/10773/30455
DOI: 10.1002/solr.202000534
ISSN: 2367-198X
Appears in Collections:DFis - Artigos
I3N-FSCOSD - Artigos

Files in This Item:
File Description SizeFormat 
2021-01-12-Revised Manuscript.pdf1.51 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.