Please use this identifier to cite or link to this item:
http://hdl.handle.net/10773/30368
Title: | Numerical solution of a class of third-kind Volterra integral equations using Jacobi wavelets |
Author: | Nemati, S. Lima, Pedro M. Torres, Delfim F. M. |
Keywords: | Third-kind Volterra integral equations Jacobi wavelets Gauss–Jacobi quadrature Collocation points |
Issue Date: | Feb-2021 |
Publisher: | Springer |
Abstract: | We propose a spectral collocation method, based on the generalized Jacobi wavelets along with the Gauss–Jacobi quadrature formula, for solving a class of third-kind Volterra integral equations. To do this, the interval of integration is first transformed into the interval [− 1, 1], by considering a suitable change of variable. Then, by introducing special Jacobi parameters, the integral part is approximated using the Gauss–Jacobi quadrature rule. An approximation of the unknown function is considered in terms of Jacobi wavelets functions with unknown coefficients, which must be determined. By substituting this approximation into the equation, and collocating the resulting equation at a set of collocation points, a system of linear algebraic equations is obtained. Then, we suggest a method to determine the number of basis functions necessary to attain a certain precision. Finally, some examples are included to illustrate the applicability, efficiency, and accuracy of the new scheme. |
Peer review: | yes |
URI: | http://hdl.handle.net/10773/30368 |
DOI: | 10.1007/s11075-020-00906-9 |
ISSN: | 1017-1398 |
Appears in Collections: | CIDMA - Artigos DMat - Artigos SCG - Artigos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
[449]Nemati_Lima_Torres-NUMA.pdf | 747.78 kB | Adobe PDF | ![]() |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.