Please use this identifier to cite or link to this item:
Title: The Ti2CO2 MXene as a nucleobase 2D sensor: a first-principles study
Author: Gouveia, José D.
Novell-Leruth, Gerard
Viñes, Francesc
Illas, Francesc
Gomes, José R. B.
Keywords: 2D materials
Density Functional Theory
Titanium Carbide MXene
Issue Date: 1-Apr-2021
Publisher: Elsevier
Abstract: MXenes are a recently discovered class of two-dimensional materials, which have been attracting much interest by virtue of their promising biomedical and electronic applications. Here, we report on the results of first-principles calculations, based on density functional theory (DFT) including dispersion, of the adsorption energies and configurations of the five nucleobases, molecules conforming nucleotides in nucleic acids, such as DNA and RNA, on the oxygen-terminated titanium carbide MXene surface (Ti2CO2), chosen as a prototype MXene due to titanium being the most biocompatible transition metal. We find that physisorption is the most likely mechanism of adsorption on the Ti2CO2 (0001) basal surface, with the molecules sitting parallel to the MXene, about 2.5 Å away. The calculated adsorption energies and Bader charge transfer values are moderate, as desired for sensing applications. We find a fair correlation between the adsorption energies and the van der Waals volumes of the nucleobases, hinting towards an adsorption dominated by van der Waals interactions. No structural deformation is observed on the molecules or on the surface. Thus, all of our conclusions support the potential applicability of the Ti2CO2 MXene as a suitable nucleobase sensor.
Peer review: yes
DOI: 10.1016/j.apsusc.2021.148946
ISSN: 0169-4332
Publisher Version:
Appears in Collections:CICECO - Artigos

Files in This Item:
File Description SizeFormat 
Gouveia_nucleobases_Ti2CO2_Author_Version.pdf871.69 kBAdobe PDFView/Open

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.