Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/30274
Title: Towards an understanding of biomolecule partition in amphiphilic systems: development of a molecular dynamics framework
Other Titles: Estudo de partição de biomoléculas em sistemas anfífilicos: desenvolvimento de uma estratégia recorrendo a dinâmica molecular
Author: Bastos, Henrique Xavier Santos
Advisor: Pérez-Sánchez, German
Schaeffer, Nicolas
Keywords: Amphiphilic molecules
Ionic liquids
Molecular dynamics
All-atom
Coarse-grained
Biomolecules
Gallic acid
Ibuprofen
Drug delivery
Defense Date: Oct-2019
Abstract: Amphiphilic molecules are interesting building blocks of self-assembled structures for a variety of biotechnological purposes, due to their hydrophobic and hydrophilic moieties. Some of them are deemed as biocompatible, capable of carrying biomolecules, while being highly tuneable and controlled with external cues. Such properties are advantageous in drug delivery applications. Ionic liquids have gained relevance since their discovery as not only responsive and adjustable, but also as promising alternatives to conventionally used solvents. This project aims to use molecular dynamics to the study of ammonium-based ionic liquids in the extraction and delivery of biomolecules, specifically gallic acid and ibuprofen. A multiscale strategy was followed to simulate systems using the GROMACS package for classical molecular dynamics simulations. High-resolution descriptions were used to create a novel coarse-grained model to reproduce the phase behaviour and partition studies. The partition of gallic acid and ibuprofen in the studied ionic liquid solutions was assessed, as well as the particular orientation of the biomolecule in the supramolecular structure of the ionic liquids, as well as the interactions generating each outcome. A pH-driven effect was verified as the main parameter affecting the studied systems. This work has the potential to pave the way for a transferable, transversal platform to analyse and test different biomolecule-IL combinations in aqueous solutions in order to save time and experimental resources in diverse applications.
As moléculas anfifílicas são elementos de elevado potencial de estruturas auto-organizadas para vários fins biotecnológicos, devido às suas componentes hidrofóbica e hidrofílica. Parte destas são biocompatíveis, capazes de transportar biomoléculas e altamente ajustáveis e controláveis por fatores externos. Estas propriedades são particularmente relevantes em aplicações de libertação controlada de fármacos. Os líquidos iónicos são cada vez mais utilizados desde a descoberta da sua sensibilidade a estímulos, ajustabilidade e possível uso como alternativas sustentáveis a solventes convencionais. Este trabalho teve como objetivo utilizar dinâmica molecular para estudar líquidos iónicos à base de iões amónio para extração e libertação de biomoléculas, particularmente ácido gálico ou ibuprofeno. Foi utilizada uma estratégia de simulação em várias escalas com o pacote de simulação em dinâmica molecular clássica GROMACS, onde modelos com alta resolução foram usados para criar modelos de grão-grosso novos, mais eficientes em estudos de partição e comportamento de fases. Foi averiguada a partição de ácido gálico e ibuprofeno nas soluções de líquido iónico em questão, bem como a orientação da biomolécula na estrutura supramolecular do líquido iónico e as interações que levaram à mesma. Foi verificado um efeito à base do pH como o principal fator a afetar os sistemas estudados. Este trabalho tem o potencial de dar origem a uma plataforma transversal e transferível para analisar e testar várias combinações de biomoléculas e líquidos iónicos em soluções aquosas de forma a poupar tempo e recursos experimentais em diversas aplicações.
URI: http://hdl.handle.net/10773/30274
Appears in Collections:UA - Dissertações de mestrado
DQ - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Documento_Henrique_Bastos.pdf9.34 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.