Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/30237
Title: Unravelling the Interactions between Surface-Active Ionic Liquids and Triblock Copolymers for the Design of Thermal Responsive Systems
Author: Pérez-Sánchez, Germán
Vicente, Filipa A.
Schaeffer, Nicolas
Cardoso, Inês S
Ventura, Sónia P. M.
Jorge, Miguel
Coutinho, João A. P.
Issue Date: 13-Aug-2020
Publisher: American Chemical Society
Abstract: The tunable properties of surface-active ionic liquids (SAILs) and Pluronics are dramatically magnified by combining them in aqueous solutions. The thermo-controlled character of both, essential in the extraction of valuable compounds, can be fine-tuned by properly selecting the Pluronic and SAIL nature. However, further understanding of the nanoscale interactions directing the aggregation in these complex mixtures is needed to effectively design and control these systems. In this work, a simple and transferable coarse-grained model for molecular dynamics simulations, based on the MARTINI force field, is presented to study the impact of SAILs in Pluronics aggregation in aqueous solutions. The diverse amphiphilic characteristics and micelle morphologies were exemplified by selecting four archetypical nonionic Pluronics-two normal, L-31 and L-35, and two reverse, 10R5 and 31R1. The impact of the alkyl chain length and the headgroup nature were evaluated with the imidazolium-based [C10mim]Cl and [C14mim]Cl and phosphonium-based [P4,4,4,14]Cl SAILs. Cloud point temperature (CPT) measurements at different Pluronic concentrations with 0.3 wt % of SAIL in aqueous solution emphasized the distinct impact of SAIL nature on the thermo-response behavior. The main effect of SAIL addition to nonionic Pluronics aqueous solutions is the formation of Pluronic/SAIL hybrid micelles, where the presence of SAIL molecules introduces a charged character to the micelle surface. Thus, additional energy is necessary to induce micelle aggregation, leading to the observed increase in the experimental CPT curves. The SAIL showed a relatively weak impact in Pluronic micelles with relatively high PPG hydrophobic content, whereas this effect was more evident when the Pluronic hydrophobic/hydrophilic strength is balanced. A detailed analysis of the Pluronic/SAIL micelle density profiles showed that the phosphonium head groups were positioned inside the micelle core, whereas smaller imidazolium head groups were placed much closer to the hydrophilic PEG corona, leading to a distinct effect on the cloud point temperature for those two classes of SAILs. Herein, the phosphonium-based SAIL induces a lower repulsion between neighboring micelles than the imidazolium-based SAILs, resulting in a less pronounced increase of the CPT. The model presented here offers, for the first time, an intuitive and powerful tool to unravel the complex thermo-response behavior of Pluronic and SAIL mixtures and support the design of tailor-made thermal controlled solvents.
Peer review: yes
URI: http://hdl.handle.net/10773/30237
DOI: 10.1021/acs.jpcb.0c02992
ISSN: 1520-6106
Appears in Collections:CICECO - Artigos

Files in This Item:
File SizeFormat 
acs.jpcb.0c02992.pdf5.35 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.