Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/29563
Title: Forecasting key performance indicator of mobile networks: application to mobile cellular networks
Other Titles: Previsão de indicadores-chave de desempenho de redes móveis: aplicação às redes móveis celulares
Author: Sousa, Ângelo Miguel Raposo Almeida e
Advisor: Duarte, Anibal Manuel de Oliveira
Bastos, João Afonso
Keywords: Mobile networks
Forecasting
Exponential Smoothing
KPI
Time Series
ARIMA
Random-Walk
Defense Date: Jul-2019
Abstract: The increase of data trafic in the world has increased the need for mobile network operators to take greater care in planning and managing theirs infrastructures. This work explores the performance of several statistical forecasting models aplied in voice and data trafic. This data was obtained from an European mobile network, and, regarding the predictive models, it was applied classic models like exponential smoothing, Holt-Winters, ARIMA, Random-Walk; as well as two more recent model proposals. Regarding the daily data, the proposed model could predict values with higher precision compared to the other models. For hourly data, depending on the time zone where the models were tested, the models with higher performance were Random-Walk and the second proposed model. In summary, this dissertation shows the performance of several classic statistical models, and how these compare to recently proposed models. It also shows that mobile network operator can use statistical forecasting methods to try to get information on how their network might react in future, giving valueable insights to perform a better managment of their network.
O aumento do tráfego de dados no mundo, aumentou a necessidade dos operadores de redes móveis terem um maior cuidado a planear e gerir as suas infraestruturas. Este trabalho explora o desempenho de vários modelos estatísticos de previsão aplicados a tráfego de voz e de dados. Os dados têm origem numa rede móvel Europeia. Relativamente aos modelos preditivos, foram aplicados modelos clássicos como alisamento exponencial, Holt-Winters, ARIMA, Random-Walk; bem como duas propostas de modelos mais recentes. Em suma, esta dissertação mostra o desempenho de alguns modelos estatísticos clássicos, e como estes se comparam a modelos recentemente propostos. Também mostra que operadores de redes podem usar métodos preditivos estatísticos para tentar obter informações de como a sua rede pode reagir no futuro, dando assim informações valiosas para que estes efetuem uma melhor gestão da sua rede.
URI: http://hdl.handle.net/10773/29563
Appears in Collections:DETI - Dissertações de mestrado
UA - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Documento_Ângelo_Sousa.pdf7.21 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.