Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/29452
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSargento, Susanapt_PT
dc.contributor.advisorReis, André Bragapt_PT
dc.contributor.authorRodrigues, André Filipe Nascimentopt_PT
dc.date.accessioned2020-10-14T15:35:53Z-
dc.date.issued2019-12-
dc.identifier.urihttp://hdl.handle.net/10773/29452-
dc.description.abstractFlying ad-hoc networks (FANETs) that are comprised of swarms of drones have become an important field of research in the area of Information Technologies (IT). With the increase of areas where these small UAVs fit, complex mission planners are being developed in order to autonomously manage and control multiple drones that belong to distinct missions. To be able to guarantee the communication between drones, a Wireless Mesh Network (WMN) with the ability to adapt to the FANETs unstable topology changes is necessary, ensuring communications within the mesh without the aid of an external, stationary base station. The purpose of this Dissertation is to design, implement and test a routing platform capable of interconnecting all drones present on a FANET. To do that, the Dissertation has four main goals: (1) the analysis of different routing algorithms that fit Mobile Ad-Hoc Networks (MANETs) methodologies; (2) the theoretical study, implementation and simulation tests of an improved version of the chosen routing algorithm to fit FANET environments; (3) the design, implementation and testing of a routing platform capable of managing drone-to-drone communications were routes are decided by the developed routing algorithm, while also dealing with communication handover; and finally, (4) the integration and testing of the routing platform with an existing autonomous mission planner which assembles missions and autonomously controls drones’ actions. By predicting the future positions of the drones in the network, and foretelling which neighbors are the best next-hop candidates for specific destinations, we show substantial improvements in network performance over the base version of the chosen routing algorithm. The enhanced routing protocol improves the selection of the next-hop node in the highly-mobile and noisy FANET environments, and a thorough set of simulations shows improvements in packet loss by 33%, in routing overhead by 13% and in jitter by 46%. This enhanced version is also integrated with a mission planner that controls drones autonomously on predefined missions, which performance is evaluated in real-life scenarios, which are successfully validated.pt_PT
dc.description.abstractRedes de drones aéreos, Unmanned Aerial Vehicles (UAVs), estão cada vez mais presentes nas áreas de investigação em Tecnologias de Informação. Com o aumento das áreas em que estes UAVs se encaixam, a planificação de missões cada vez mais complexas permitem gerir e controlar autonomamente vários drones que pertencem a missões distintas. Para garantir a comunicação entre os drones é necessária uma Rede de Malha Sem Fios, Wireless Mesh Networks (WMN), capaz de se adaptar às alterações instáveis da topologia das Redes Ad-Hoc Voadoras, Flying Ad Hoc Networks (FANETs), e garantir a comunicação dentro da malha sem o auxílio de uma estação base externa estacionária. O objetivo desta Dissertação é projetar, implementar e testar uma plataforma de encaminhamento capaz de interligar todos os drones presentes numa FANET. Para tal, a Dissertação possui quatro objetivos principais definidos: (1) a análise de diferentes algoritmos de encaminhamento que se encaixam nas metodologias de Redes Ad-Hoc Móveis (MANET); (2) o estudo teórico, testes de implementação, e simulação de uma versão melhorada do algoritmo de encaminhamento escolhido para se enquadrar no ambiente de FANETs; (3) o planeamento da estrutura, implementação e teste de uma plataforma de encaminhamento capaz de gerir as comunicações drone a drone, cujas rotas são decididas pelo algoritmo de encaminhamento também ele desenvolvido, e esta estrutura também lida com as trocas de comunicação entre drones; e, por último, (4) a integração e teste da plataforma de encaminhamento desenvolvida com um mecanismo de missões autónomas existente que cria missões e controla autonomamente as ações de cada drone. A versão base do algoritmo de encaminhamento escolhido foi testada em cenários de simulação e mostra que o desempenho da rede pode ser melhorado com a inclusão de predição de posição, prevendo quais os vizinhos que são mais benéficos para a escolha do próximo salto que conduz para um destino específico. A versão proposta revela melhoramentos na seleção de um próximo salto para um destino num ambiente móvel e instável presente numa FANET. Através de um conjunto de simulações, a versão proposta revela uma diminuição na taxa de perda de pacotes em 33%, de overhead/sobrecarga na rede de 13%, e no jitter de 46%. Esta versão optimizada é também integrada com um planeador de missões autónomo. O desempenho desta integração é validado em cenário reais.pt_PT
dc.language.isoengpt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectRoutingpt_PT
dc.subjectUAVspt_PT
dc.subjectGPSRpt_PT
dc.subjectFANETpt_PT
dc.subjectWMNpt_PT
dc.subjectAd Hocpt_PT
dc.subjectPosition Predictionpt_PT
dc.subjectRSSIpt_PT
dc.titleControl and communication in a system with multiple interconnected aerial dronespt_PT
dc.title.alternativeControlo e comunicação num sistema com múltiplos drones aéreos interligadospt_PT
dc.typemasterThesispt_PT
thesis.degree.grantorUniversidade de Aveiropt_PT
dc.date.embargo2020-12-05-
dc.description.masterMestrado em Engenharia de Computadores e Telemáticapt_PT
Appears in Collections:UA - Dissertações de mestrado
DETI - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Documento_André_Rodrigues.pdf12.25 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.