Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/29229
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Isabelpt_PT
dc.contributor.authorAlonso, Hugopt_PT
dc.date.accessioned2020-09-15T17:00:41Z-
dc.date.issued2020-
dc.identifier.issn0266-4763pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/29229-
dc.description.abstractThe Tourism sector is of strategic importance to the North Region of Portugal and is growing. Forecasting monthly overnight stays in this region is, therefore, a relevant problem. In this paper, we analyze data more recent than those considered in previous studies and use them to develop and compare several forecasting models and methods. We conclude that the best results are achieved by models based on a non-parametric approach not considered so far for these data, the singular spectrum analysis.pt_PT
dc.language.isoengpt_PT
dc.publisherTaylor & Francispt_PT
dc.relationUIDB/04106/2020pt_PT
dc.relationUIDP/04106/2020pt_PT
dc.rightsembargoedAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectForecastingpt_PT
dc.subjectNeural networkspt_PT
dc.subjectOvernight stayspt_PT
dc.subjectSingular spectrum analysispt_PT
dc.subjectTime seriespt_PT
dc.titleNew developments in the forecasting of monthly overnight stays in the North Region of Portugalpt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.firstPage2927pt_PT
degois.publication.issue13-15pt_PT
degois.publication.lastPage2940pt_PT
degois.publication.titleJournal of Applied Statisticspt_PT
degois.publication.volume47pt_PT
dc.date.embargo2021-07-21-
dc.relation.publisherversionhttps://www.tandfonline.com/doi/full/10.1080/02664763.2020.1795812pt_PT
dc.identifier.doi10.1080/02664763.2020.1795812pt_PT
dc.identifier.essn1360-0532pt_PT
Appears in Collections:CIDMA - Artigos
PSG - Artigos

Files in This Item:
File Description SizeFormat 
JAS2020_IMS_HAlonso_repositorio.pdf387.26 kBAdobe PDFembargoedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.