Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/28984
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZine, Houssinept_PT
dc.contributor.authorTorres, Delfim F. M.pt_PT
dc.date.accessioned2020-08-04T09:01:25Z-
dc.date.available2020-08-04T09:01:25Z-
dc.date.issued2020-09-
dc.identifier.urihttp://hdl.handle.net/10773/28984-
dc.description.abstractWe introduce a stochastic fractional calculus. As an application, we present a stochastic fractional calculus of variations, which generalizes the fractional calculus of variations to stochastic processes. A stochastic fractional Euler-Lagrange equation is obtained, extending those available in the literature for the classical, fractional, and stochastic calculus of variations. To illustrate our main theoretical result, we discuss two examples: one derived from quantum mechanics, the second validated by an adequate numerical simulation.pt_PT
dc.language.isoengpt_PT
dc.publisherMDPIpt_PT
dc.relationUIDB/04106/2020pt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectFractional derivatives and integralspt_PT
dc.subjectStochastic processespt_PT
dc.subjectCalculus of variationspt_PT
dc.titleA stochastic fractional calculus with applications to variational principlespt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.issue3pt_PT
degois.publication.titleFractal and Fractionalpt_PT
degois.publication.volume4pt_PT
dc.relation.publisherversionhttps://www.mdpi.com/2504-3110/4/3/38pt_PT
dc.identifier.doi10.3390/fractalfract4030038pt_PT
dc.identifier.essn2504-3110pt_PT
Appears in Collections:CIDMA - Artigos
DMat - Artigos
SCG - Artigos

Files in This Item:
File Description SizeFormat 
[456]withZine01.pdf268.98 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.