Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/28673
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastro, L. P.pt_PT
dc.contributor.authorSimões, A. M.pt_PT
dc.date.accessioned2020-06-12T18:42:27Z-
dc.date.available2020-06-12T18:42:27Z-
dc.date.issued2018-12-04-
dc.identifier.issn0094-243Xpt_PT
dc.identifier.urihttp://hdl.handle.net/10773/28673-
dc.description.abstractThis work is devoted to analyse different kinds of stabilities for higher order integro-differential equations within appropriate metric spaces. We will consider the sigma-semi-Hyers-Ulam stability which is a new kind of stability somehow between the Hyers-Ulam and the Hyers-Ulam-Rassias stabilities. Sufficient conditions are obtained in view to guarantee Hyers-Ulam, sigma-semi-Hyers-Ulam and Hyers-Ulam-Rassias stabilities for such a class of integro-differential equations. We will be considering finite and infinite intervals as integration domains. Among the used techniques, we have fixed point arguments and generalizations of the Bielecki metric.pt_PT
dc.language.isoengpt_PT
dc.publisherAIP Publishingpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147206/PTpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147408/PTpt_PT
dc.rightsopenAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectStabilitypt_PT
dc.subjectHyers-Ulam-Rassias stabilitypt_PT
dc.subjectIntegro-differential equationpt_PT
dc.titleStabilities for a class of higher order integro-differential equationspt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.issue1pt_PT
degois.publication.titleAIP Conference Proceedingspt_PT
degois.publication.volume2046pt_PT
dc.identifier.doi10.1063/1.5081532pt_PT
dc.identifier.essn1551-7616pt_PT
Appears in Collections:CIDMA - Artigos
DMat - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
CastroSimoes2018.pdf455.09 kBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.