Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/28659
Title: The role of Li+ in the upconversion emission enhancement of (YYbEr)2O3 nanoparticles
Author: Debasu, Mengistie L.
Riedl, Jesse C.
Rocha, João
Carlos, Luís D.
Issue Date: 7-Sep-2018
Publisher: Royal Society of Chemistry
Abstract: The mechanism of upconversion enhancement for Li+-doped materials is still contentious. Attempting to settle the debate, here the upconversion emission enhancement of (Y0.97-xYb0.02Er0.01Lix)2O3, x = 0.000-0.123, nanoparticles is studied. Li+ incorporation in the Y2O3 host lattice is achieved via co-precipitation and solid-state reaction routes. In contrast to numerous reports, elemental analysis reveals that the former method does not afford Li+-bearing nanoparticles. The solid-state reaction route accomplishes an effective Li+ doping, as witnessed by inductively coupled plasma atomic emission spectroscopy and X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy and powder X-ray diffraction showed an increase in nanoparticle size with increasing Li+ concentration. Rietveld refinement of powder X-ray diffraction data shows that the cubic lattice parameter decreases with increasing Li+ content. The emission quantum yield increases tenfold with increasing Li+ content up to x = 0.123, reaching a maximal value of 0.04% at x = 0.031. XPS and infrared spectroscopy show that the carbonate groups increase with increasing Li+ content, thus not supporting the prevailing view that the upconversion luminescence enhancement observed upon Li+ nanoparticle's doping is due to the decrease of the number of quenching carbonate groups present. Rather, the particle size increment and the decrease in the lattice parameter of the host crystals are shown to be the prime sources of quantum yield enhancement.
Peer review: yes
URI: http://hdl.handle.net/10773/28659
DOI: 10.1039/C8NR03608J
ISSN: 2040-3364
Appears in Collections:CICECO - Artigos

Files in This Item:
File Description SizeFormat 
Nanoscale.pdf1.58 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.