Please use this identifier to cite or link to this item:
Title: Exploring the potential of web based information of business popularity for supporting sustainable traffic management
Author: Bandeira, Jorge M.
Tafidis, Pavlos
Macedo, Eloísa
Teixeira, João
Bahmankhah, Behnam
Guarnaccia, Cláudio
Coelho, Margarida C.
Keywords: ICT
Google Maps
Sustainable transport
Issue Date: Feb-2020
Publisher: Transport and Telecommunication Institute
Abstract: This paper explores the potential of using crowdsourcing tools, namely Google "Popular times" (GPT) as an alternative source of information to predict traffic-related impacts. Using linear regression models, we examined the relationships between GPT and traffic volumes, travel times, pollutant emissions and noise of different areas in different periods. Different data sets were collected: i) crowdsourcing information from Google Maps; ii) traffic dynamics with the use of a probe car equipped with a Global Navigation Satellite System data logger; and iii) traffic volumes. The emissions estimation was based on the Vehicle Specific Power methodology, while noise estimations were conducted with the use of “The Common Noise Assessment Methods in Europe” (CNOSSOS-EU) model. This study shows encouraging results, as it was possible to establish clear relationships between GPT and traffic and environmental performance.
Peer review: yes
Appears in Collections:TEMA - Artigos
DEM - Artigos

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.