Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/27325
Title: Structural features and pro-inflammatory effects of water-soluble organic matter in inhalable fine urban air particles
Author: Almeida, Antoine S.
Ferreira, Rita M. P.
Silva, Artur M. S.
Duarte, Armando C.
Neves, Bruno M.
Duarte, Regina M. B. O.
Issue Date: 11-Nov-2019
Publisher: American Chemical Society
Abstract: The impact of inhalable fine particulate matter (PM2.5, aerodynamic diameter < 2.5 µm) on public health is of great concern worldwide. Knowledge on their harmful effects are mainly due to studies carried out with whole air particles, being the contribution of their different fractions largely unknown. Herein, a set of urban PM2.5 samples were collected during day and nighttime periods in Autumn and Spring, aiming to address the seasonal and day-night variability of water-soluble organic matter (WSOM) composition. In vitro analysis of oxidative and pro-inflammatory potential of WSOM samples was carried out in both acute (24 h) and chronic (3 weeks) exposure setups using Raw264.7 macrophages as cell model. Findings revealed that the structural composition of WSOM samples differs between seasons and in a day-night cycle. Cells exposure resulted in an increase in the transcription of the cytoprotective Hmox1 and pro-inflammatory genes Il1b and Nos2, leading to a moderate pro-inflammatory status. These macrophages showed an impaired capacity to subsequently respond to a strong pro-inflammatory stimulus such as bacterial lipopolysaccharide, which may implicate a compromised capacity to manage harmful pathogens. Further investigation on aerosol WSOM could help to constrain the mechanisms of WSOM-induced respiratory diseases and contribute to PM2.5 regulations.
Peer review: yes
URI: http://hdl.handle.net/10773/27325
DOI: 10.1021/acs.est.9b04596
ISSN: 0013-936X
Appears in Collections:CESAM - Artigos
IBIMED - Artigos
DQ - Artigos
QOPNA - Artigos
DCM - Artigos
REQUIMTE - Artigos

Files in This Item:
File Description SizeFormat 
acs.est.9b04596.pdf1.08 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.