Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/26713
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCardoso, Domingos M.pt_PT
dc.date.accessioned2019-10-09T17:12:48Z-
dc.date.available2019-10-09T17:12:48Z-
dc.date.issued2019-09-30-
dc.identifier.issn0166-218Xpt_PT
dc.identifier.urihttp://hdl.handle.net/10773/26713-
dc.description.abstractA (k,t)-regular set is a vertex subset S inducing a k-regular subgraph such that every vertex out of S has t neighbors in S. This article is an expository overview of the main results obtained for graphs with (k,t)-regular sets. The graphs with classical combinatorial structures, like perfect matchings, Hamilton cycles, efficient dominating sets, etc, are characterized by (k,t)-regular sets whose determination is equivalent to the determination of those classical combinatorial structures. The characterization of graphs with these combinatorial structures are presented. The determination of (k,t)-regular sets in a finite number of steps is deduced and the main spectral properties of these sets are described.pt_PT
dc.language.isoengpt_PT
dc.publisherElsevierpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147206/PTpt_PT
dc.rightsrestrictedAccesspt_PT
dc.subjectPerfect matchingpt_PT
dc.subjectHamilton cyclept_PT
dc.subjectEfficient dominating setpt_PT
dc.subjectMaximum k-regular induced subgraphpt_PT
dc.subjectGraph spectrapt_PT
dc.titleAn overview of (k,t)-regular sets and their applicationspt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.firstPage2pt_PT
degois.publication.lastPage10pt_PT
degois.publication.titleDiscrete Applied Mathematicspt_PT
degois.publication.volume269pt_PT
dc.identifier.doi10.1016/j.dam.2018.12.020pt_PT
Appears in Collections:CIDMA - Artigos
DMat - Artigos
OGTCG - Artigos

Files in This Item:
File Description SizeFormat 
1-s2.0-S0166218X18306632-main (4).pdf317.59 kBAdobe PDF    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.