Please use this identifier to cite or link to this item:
Title: Boundary values of discrete monogenic functions over bounded domains in $$ \mathbb{R}^3 $$
Other Titles: Boundary values of discrete monogenic functions over bounded domains in R3
Author: Cerejeiras, Paula
Kähler, Uwe
Legatiuk, Anastasiia
Legatiuk, Dmitrii
Keywords: Discrete Dirac operator
Discrete monogenic functions
Discrete function theory
Discrete Cauchy transform
Issue Date: 9-Aug-2019
Publisher: Birkhäuser
Abstract: In this paper we are going to study boundary values for discrete monogenic functions over bounded spatial domains. After establishing the discrete Stokes formula and the Borel–Pompeiu formula we are going to construct discrete Plemelj–Sokhotzki formulae, discrete Plemelj projections and discrete Hardy spaces. A further extension to the n-dimensional case can be done in a straightforward way based on the results presented in this paper.
Peer review: yes
DOI: 10.1007/978-3-030-18484-1_5
ISBN: 978-3-030-18483-4
Publisher Version:
Appears in Collections:CIDMA - Capítulo de livro
CHAG - Capítulo de livro

Files in This Item:
File Description SizeFormat 
10.1007@978-3-030-18484-15.pdfManuscript391.67 kBAdobe PDFrestrictedAccess

Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.