Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/26294
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, Dafangpt_PT
dc.contributor.authorYe, Guojupt_PT
dc.contributor.authorLiu, Weipt_PT
dc.contributor.authorTorres, Delfim F. M.pt_PT
dc.date.accessioned2019-07-15T09:37:44Z-
dc.date.available2019-07-15T09:37:44Z-
dc.date.issued2019-08-
dc.identifier.issn1432-7643pt_PT
dc.identifier.urihttp://hdl.handle.net/10773/26294-
dc.description.abstractWe introduce the interval Darboux delta integral (shortly, the IDΔ -integral) and the interval Riemann delta integral (shortly, the IR Δ -integral) for interval-valued functions on time scales. Fundamental properties of ID and IR Δ -integrals and examples are given. Finally, we prove Jensen’s, Hölder’s and Minkowski’s inequalities for the IR Δ -integral. Also, some examples are given to illustrate our theoremspt_PT
dc.language.isoengpt_PT
dc.publisherSpringerpt_PT
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147206/PTpt_PT
dc.rightsrestrictedAccesspt_PT
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectInterval-valued functionspt_PT
dc.subjectTime scalespt_PT
dc.subjectHölder’s inequalitypt_PT
dc.subjectMinkowski’s inequalitypt_PT
dc.subjectJensen’s inequalitypt_PT
dc.titleSome inequalities for interval-valued functions on time scalespt_PT
dc.typearticlept_PT
dc.description.versionpublishedpt_PT
dc.peerreviewedyespt_PT
degois.publication.firstPage6005pt_PT
degois.publication.issue15pt_PT
degois.publication.lastPage6015pt_PT
degois.publication.titleSoft Computingpt_PT
degois.publication.volume23pt_PT
dc.relation.publisherversionhttp://dx.doi.org/10.1007/s00500-018-3538-6pt_PT
dc.identifier.doi10.1007/s00500-018-3538-6pt_PT
dc.identifier.essn1433-7479pt_PT
Appears in Collections:CIDMA - Artigos
SCG - Artigos

Files in This Item:
File Description SizeFormat 
[415]inequalities_interval-valued_functions_time_scales.pdf482.89 kBAdobe PDFrestrictedAccess


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.