Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/25920
Title: The orthogonality of the fractional circle polynomials and its application in modeling of ophthalmic surfaces
Author: Rodrigues, Maria Manuela Fernandes
Vieira, Nelson Felipe
Keywords: Zernike polynomials
Fractional circle polynomials
ophthalmic surfaces
Issue Date: 2019
Publisher: IOP Publishing
Abstract: In this paper we establish some new fractional differential properties for a class of fractional circle polynomials. We apply the Zernike polynomials and a new class of fractional circle polynomials in modeling ophthalmic surfaces in visual optics and we compare the obtained results. The total RMS error is presented when addressing capability of these functions in fitting with surfaces, and it is showed that the new fractional circle polynomials can be used as an alternative to the Zernike Polynomials to represent the complete anterior corneal surface.
Peer review: yes
URI: http://hdl.handle.net/10773/25920
DOI: 10.1088/1742-6596/1194/1/012094
ISSN: 1742-6588
Publisher Version: https://iopscience.iop.org/article/10.1088/1742-6596/1194/1/012094
Appears in Collections:CIDMA - Artigos
FAAG - Artigos

Files in This Item:
File Description SizeFormat 
Rodrigues_2019_J._Phys.__Conf._Ser._1194_012094.pdf464.04 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.